Seismic Response Analysis of Container Crane

2012 ◽  
Vol 503-504 ◽  
pp. 1104-1107
Author(s):  
Shi Qing Lu ◽  
Han Bin Xiao ◽  
Ping Deng

Earthquakes pose a threat to large-scale container cranes. Previous earthquakes damaged many container cranes, which had a significant impact on business interruption losses of the port. In this paper, a container crane’s seismic response is analyzed in ANSYS. First, a finite element model of a container crane is developed. Then, based on the equations of structural dynamics, the four most important modes of the container crane are extracted. Finally, a time history analysis is conducted to obtain the displacements of some critical nodes on the crane model under the excitation of an earthquake wave. The result of this paper provides a reference for the seismic design of container cranes.

2010 ◽  
Vol 102-104 ◽  
pp. 150-154
Author(s):  
Xiao Ping Hu ◽  
Xiao Ping Ye

The seismic load usually has a significant hazard to the safety of the tower equipment, so it’s important to execute of seismic design in engineering practice. In this paper, the time history analysis of the seismic response is carried out with the help of ANSYS software for the finite element model of the adsorption tower. Relevant time history data is obtained. Compared with seismic analysis of the current standard method, corresponding suggestions are given.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Yutao Pang ◽  
Aijun Ye

AbstractCoastal highway bridges are usually supported by pile foundations that are submerged in water and embedded into saturated soils. Such sites have been reported susceptible to scour hazard and probably liquefied under strong earthquakes. Existing studies on seismic response analyses of such bridges often ignore the influence of water-induced hydrodynamic effect. This study assesses quantitative impacts of the hydrodynamic effect on seismic responses of coastal highway bridges under scour and liquefaction potential in a probabilistic manner. A coupled soil-bridge finite element model that represents typical coastal highway bridges is excited by two sets of ground motion records that represent two seismic design levels (i.e., low versus high in terms of 10%-50 years versus 2%-50 years). Modeled by the added mass method, the hydrodynamic effect on responses of bridge key components including the bearing deformation, column curvature, and pile curvature is systematically quantified for scenarios with and without liquefaction across different scour depths. It is found that the influence of hydrodynamic effect becomes more noticeable with the increase of scour depths. Nevertheless, it has minor influence on the bearing deformation and column curvature (i.e., percentage changes of the responses are within 5%), regardless of the liquefiable or nonliquefiable scenario under the low or high seismic design level. As for the pile curvature, the hydrodynamic effect under the low seismic design level may remarkably increase the response by as large as 15%–20%, whereas under the high seismic design level, it has ignorable influence on the pile curvature.


2012 ◽  
Vol 166-169 ◽  
pp. 2138-2142
Author(s):  
Hui Min Wang ◽  
Liang Cao ◽  
Ji Yao ◽  
Zhi Liang Wang

For the complex features in the form of a flat L-shaped reinforced concrete frame structure, the three dimensional FEM model of the structure was established in this paper, and the dynamic characteristics of the structure was analyzed, the participation equivalent mass of every mode’s order was obtained. Seismic response analysis for the structure was carried out with modal decomposition spectrum method and time history analysis method, the weak layer of the structure was pointed out and the reference for the structural design was provided.


Author(s):  
Satoru Kai ◽  
Tomoyoshi Watakabe ◽  
Naoaki Kaneko ◽  
Kunihiro Tochiki ◽  
Makoto Moriizumi ◽  
...  

The piping in a nuclear power plant is laid across multiple floors of a single building or two buildings, which are supported at many points. As the piping is excited by multiple-inputs from the supporting points during an earthquake, seismic response analysis by multiple excitations is needed to obtain the exact seismic response of the piping. However, few experiments involving such multiple excitation have been performed to verify the validity of multiple excitation analysis. Therefore, analysis of the seismic design of piping in Japan is performed by the enveloped Floor Response Spectrum (FRS), which covers all floor response spectra at all supporting points. The piping response estimated by enveloped FRS is conservative in most cases compared with the actual seismic response by multiple excitations. To perform rational seismic design and evaluation, it is important to investigate the seismic response by multiple excitations and to verify the validity of the analytical method by multiple excitation test. This paper reports the validation results of the multiple-excitation analysis of piping compared with the results of the multiple excitations shaking test using triple uni-axial shaking table and a 3-dimensional piping model (89.1mm diameter and 5.5mm thickness). Three directional moments from the analysis and the shaking test were compared on the validation. As the result, it is confirmed that the analysis by multiple time history excitation corresponds with the test result.


2012 ◽  
Vol 5 ◽  
pp. 183-188
Author(s):  
Lian Zhen Zhang ◽  
Tian Liang Chen

Self-anchored suspension bridge is widely used in Chinese City bridge engineering for the past few years. Because the anchorage system of main cable has been changed from anchorage blocks to the ends of the girder, its’ dynamic mechanics behavior is greatly distinguished with the traditional earth anchored suspension bridge. This paper studies the dynamic characteristics and seismic response of one large-span self-anchored suspension bridge which is located in China/Shenyang city. Using a spatial dynamic analysis finite element mode, the dynamic characteristics are calculated out. An artificial seismic wave is adopted as the ground motion input which is fitted with acceleration response spectrum according to the Chinese bridge anti-seismic design code. Time-integration method is used to get the seismic time-history response. Geometry nonlinear effect is considered during the time-history analysis. At last, the dynamic characteristics and the behavior of earthquake response of this type bridge structure are discussed clearly. The research results can be used as the reference of seismic response analysis and anti-seismic design for the same type of bridge.


2012 ◽  
Vol 446-449 ◽  
pp. 2290-2294
Author(s):  
Wen Liang Qiu ◽  
Meng Jiang ◽  
Xing Bo Zhang

For floating system cable-stayed bridge, the longitudinal displacement of stiffening girder and moments of towers are very large when strong earthquake happens. Too large displacement of stiffening girder leads to collision between girders of the main bridge and the approaches. Using spatial finite element model and time history analysis method, the seismic responses of cable-stayed bridge are studied considering the elasto-plastic effects. The results show that the displacement of stiffening girder is very large when no seismic reduction measures are adopted. The viscous dampers installed between the stiffening girder and towers can efficiently reduce seismic responses of the cable-stayed bridge. Especially, the displacement of stiffening girder can be controlled well to meet the design requirement. Using the optimum parameters of damper, the height of pier under tower and intermediate supports in side span on seismic responses are studied in detail. The longitudinal displacement of stiffening girder increases with the pier height increasing. The intermediate supports in side span are benefit for seismic reduction.


2010 ◽  
Vol 456 ◽  
pp. 67-76 ◽  
Author(s):  
Jun Ma ◽  
Yan Jiang Chen ◽  
Li Peng Liu

A finite-element model for CFST members using a 3D composite beam fiber element is presented which accounts for the nonlinear constitutive models of steel and concrete separately. The model is proved to be valid by comparing the computational results of some test specimens with their experimental data. Using this model, a CFST arch bridge’s seismic response was calculated. The result indicated that the magnitude of displacements and moments at arch crown increases up to 10 percent caused by CFST hysteretic behavior which should be seriously considered during seismic design. Some measures and suggestions bring forward to guide the design and construction of this type of bridge.


2011 ◽  
Vol 255-260 ◽  
pp. 1096-1101
Author(s):  
Qing Zhao

Taking an engineering design case about a city elevated curved box girders bridge, the dynamic calculating model of the curved box girders bridge is created by the finite element analysis program ANSYS. The analysis of curved box girders bridge with space seismic response are discussed, and a time history analysis is conducted for the curved box girders bridge subjected to the E1 Centro earthquake waves in two conditions.The internal force and the displacement time history response curve of the curved box girders bridge are obtained. The results indicate that the seismic response of curved box girders bridge with three-dimensional earthquake are bigger than two-dimensional, and consider the vertical seismic have considerable influence on the axial force of bridge piers, the internal force and displacement of box girders.


2004 ◽  
Vol 126 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Nobuyuki Kobayashi ◽  
Hiroshi Kuribara ◽  
Tomokazu Honda ◽  
Masahiro Watanabe

This paper presents a modeling method based on multibody dynamics formulation for simulating the three-dimensional nonlinear seismic response of a large, movable container crane, including the contact problem regarding the wheels attached to the bottom of its legs and the rails on which they ride. As a container crane is large and flexible structure, its wheels should be lifted up and derailed due to the seismic excitation. The contact configuration and the contact forces between the wheels and the rail or the ground that significantly affect the seismic response of the structure are classified and calculated in reference to geometric relationships between contact-judging markers on the wheels and the rails. It is found that the numerical simulations with the presented modeling method quite accurately simulates the nonlinear seismic response of a container crane including the uplifting and derailment behavior of the wheels that is found in large-scale model shaking tests.


Author(s):  
Satoru Kai ◽  
Tomoyoshi Watakabe ◽  
Naoaki Kaneko ◽  
Kunihiro Tochiki ◽  
Makoto Moriizumi ◽  
...  

Piping in a nuclear power plant is usually laid across several floors of a single building or adjacent buildings, and is supported at many points. As the piping is excited by a large earthquake through multiple supporting points, seismic response analysis by multiple excitations within the range of plastic deformation of piping material is necessary to obtain the precise seismic response of the piping. The verification of the dynamic analysis method of piping under an elastic domain, which is excited by multiple seismic inputs, was performed in our study last year and the correspondence of a piping response between an analysis and an experiment have been confirmed [17][18]. However, few experiments under plastic deformation conditions have been performed to verify the validity of multiple excitation analysis under a plastic deformation range. To obtain better understanding of the behavior of piping under a large seismic input, it is important to investigate the seismic response by multiple excitations and to verify the validity of the analytical method by multiple excitation experiments. This paper reports the validation results of the seismic elastic-plastic time history analysis of piping compared with the results of the shaking test of a 3-dimensional piping model under a plastic deformation range using triple uni-axial shake table. Three directional strains from the analysis and the experiments were compared in order to validate the analysis method. As a result, it is confirmed that the elastic-plastic analysis by time history excitation shows good agreement with the test results.


Sign in / Sign up

Export Citation Format

Share Document