Cutting Force Prediction of Stainless Steel in High-Speed Milling

2012 ◽  
Vol 538-541 ◽  
pp. 1369-1372
Author(s):  
Xiao Zheng Xie ◽  
Yun Ping Yao ◽  
Rong Zhen Zhao ◽  
Wu Yin Jin

According to the components, mechanical properties of difficult-to-process material (26NiCrMoV145)as well as characteristics of high-speed machining, modelling and prediction of cutting force in high-speed milling is studied. Based on geometry model of ball end mill edge line, milling force model of helical ball milling cutter is established by theoretical analysis and empirical coefficient. Then, simulation prediction of cutting forece is conducted under different circumstances. The experimental result shows that the predicted cutting force is consistent with experimental data and the established model is reasonable. The article contributes to the milling of difficult-to-process material, which improves security and productive efficiency in processing.

2011 ◽  
Vol 418-420 ◽  
pp. 840-843
Author(s):  
Qing Hua Song ◽  
Xing Ai

The efficiency of the high-speed milling process is often limited by the occurrence of chatter. In order to predict the occurrence of chatter, accurate models are necessary. With the speed increasing, gyroscopic effect plays an important pole on the system behavior, including dynamic characteristic and rotating behavior. Considering the influence of gyroscopic effect on rotating behavior, an updated model for the milling process is presented which features as model of the equivalent profile of tool. In combination with this model, a nonlinear instantaneous cutting force model is proposed. The use of this updated equivalent profile of tool results in significant differences in the static uncut thickness compared to the traditional model.


2010 ◽  
Vol 97-101 ◽  
pp. 1819-1822 ◽  
Author(s):  
Hou Ming Zhou ◽  
Jian Xin Deng ◽  
Zhen Yu Zhao ◽  
Shi Ping Yang

Finite element model of the matching of lengthened shrink-fit holder (LSFH) and cutting tool is established and a milling force model is developed to predict the transient milling force exactly using back propagation neural network (BPNN). Subsequently, the transient dynamic characteristic of matching of LSFH and cutting tool is analyzed and the simulation result is obtained. Finally, the simulation result is verified with practical measurement and the results fit very well. The studies are important to optimum design and select the lengthened shrink-fit holder in high speed milling.


2011 ◽  
Vol 188 ◽  
pp. 3-8
Author(s):  
Shu Tao Huang ◽  
X.L. Yu ◽  
Li Zhou

SiCp/Al composites with high volume fraction and large particles are very difficult to machine. In this present study, high-speed milling experiments were carried out on the SiCp/Al composites by the three factors-levels orthogonal experiment method, and multiple linear regression analysis was employed to establish milling force model. The results show that the milling forces decrease with the increasing of the milling speed or increase with the increasing of the feed rate and depth of milling. The influence of milling depth on the milling forces in directions of x, y is the most significant, while the influence of the feed rate on the z-milling forces are the most significant. The calculation values from the milling force model are consistent with the experimental values. The results will provide a reliable theoretical guidance for milling of SiCp/Al composites, and it is feasible to predict the milling force during the milling of SiCp/Al by using this model.


2012 ◽  
Vol 152-154 ◽  
pp. 404-408
Author(s):  
Hong Liang Zhou ◽  
Wei Xiao Tang ◽  
Qing Hua Song

High-speed milling (HSM) has advantages in high productivity high precision and low production cost. Thus it can be widely used in the manufacture industry. However, when the speed of spindle-tool reaches a higher speed range, the gyroscopic effect will become an important part of its stable milling. In this paper, a dynamics model of HSM system was proposed considering the influence of gyroscopic moment due to high rotating speed of end milling. Finite element model (FEM) is used to model the dynamics of a spindle-milling system. It obtains the trajectory of central point in face milling with considering gyroscopic effects through the dynamics model at high speeds. Then the cutting force model will be corrected by the trajectory of face milling. Then the stability lobes diagrams (SLD) was elaborated. Cutting thickness effects have non-negligible impact on stability limitation.


2021 ◽  
Author(s):  
Mehmet AYDIN ◽  
Uğur Köklü

Abstract This paper presents a systematic study to analyze the dependence of cutting forces on tool geometry, workpiece material and cutting parameters such as spindle speed, tool engagement and cutting direction in flat-end milling with tool runout. The cutting forces are determined according to a mechanistic force model considering the trochoidal flute path to calculate the undeformed chip thickness, and average cutting force and linear regression model are applied for identifying the coefficients of the force model. A series of milling processes are conducted on AZ31 Magnesium (Mg) alloy and titanium alloy (Ti6Al4V) to analyze the instantaneous cutting force curves, amplitudes of cutting forces and peak forces over a wide range of spindle speeds from conventional to high-speed milling. It is demonstrated that the values of the cutting force coefficients are higher at conventional spindle speed and decrease with an increase in spindle speed, especially when machining Ti6Al4V alloy. For the edge force coefficients, it is observed a slight variation when using cutting tools with different helix angles. Besides, the cutting force amplitudes strongly depend upon the workpiece material. The helix angle has a significant influence on the transverse force amplitude at conventional speed. The forces obtained mechanistically are also substantiated by comparison with measurements.


CIRP Annals ◽  
2005 ◽  
Vol 54 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Z.G. Wang ◽  
M. Rahman ◽  
Y.S. Wong ◽  
X.P. Li

2011 ◽  
Vol 314-316 ◽  
pp. 389-392
Author(s):  
Hong Liang Zhou ◽  
Wei Xiao Tang ◽  
Qing Hua Song ◽  
Hua Wei Ju

High-speed milling (HSM) has advantages in high productivity high precision and low production cost. Thus it can be widely used in the manufacture industry. However, when the speed of spindle-tool reaches a higher speed range, the gyroscopic effect will become an important part of its stable milling. In this paper, a dynamics model of HSM system was proposed considering the influence of gyroscopic moment due to high rotating speed of end milling. Finite element model (FEM) is used to model the dynamics of a spindle-milling system. It obtains the trajectory of central point in face milling with considering gyroscopic effects through the dynamics model at high speeds. Then the cutting force model will be corrected by the trajectory of face milling. So it can provide a basis for stability prediction of high speed milling.


Sign in / Sign up

Export Citation Format

Share Document