Characterization of LiMn0.3Co0.3Ni0.3Cr0.1O2 and LiMn0.333Co0.333Ni0.333O2 Synthesized via Sol-Gel Method: XRD, SEM and XPS Studies

2012 ◽  
Vol 545 ◽  
pp. 148-152
Author(s):  
Jaafar Mohd Hilmi ◽  
Rusdi Roshidah ◽  
Mohamed Nor Sabirin ◽  
Rosiyah Yahya ◽  
Norlida Kamarulzaman

One of the aspects most intensively researched in the continuing improvisation of lithium battery is the search for high capacity, high energy density and high performance cathode materials. Substitution of the electroactive elements with heteroatoms is one of the promising methods. In this study, a potential cathode material with a layered structure was successfully synthesized via a sol-gel method. As a comparison, the well-known LiMn1/3Co1/3Ni1/3O2(LiMn0.333Co0.333Ni0.333O2) was also synthesized using exactly the same method and conditions. Both materials were characterized using simultaneous thermogravimetric analysis (STA), X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS). The stoichiometries of the compounds were also confirmed through energy-dispersive X-ray spectroscopy (EDX) measurement. XRD results show that both compounds are single phase and impurity-free with well-ordered hexagonal layered structure characteristics of R-3m space group. Both compounds also show similar morphologies with well-formed crystals and clean surfaces as depicted by the SEM images. XPS measurement reveals that the introduction of chromium into LiMn1/3Co1/3Ni1/3O2results in a considerable change in the chemical environment as observed by significant changes in the binding energies (BE) of manganese, cobalt and nickel respectively.

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


2018 ◽  
Vol 102 (4) ◽  
pp. 1776-1783 ◽  
Author(s):  
Yu Dan ◽  
Haojie Xu ◽  
Yangyang Zhang ◽  
Kailun Zou ◽  
Qingfeng Zhang ◽  
...  

2007 ◽  
Vol 14 (06) ◽  
pp. 1181-1185 ◽  
Author(s):  
ENLING LI ◽  
XUEWEN WANG ◽  
SHANSHAN WANG ◽  
GUICAN CHEN

Gallium nitride ( GaN ) nanocrystalline powder has been prepared by sol–gel method. The GaN powder has been confirmed as single-crystalline GaN with wurtzite structure by X-ray diffraction (XRD) and selected-area electron diffraction (SAED), and the diameter of the grains of GaN powder changes from 30 to 100 nm under transmission electron microscopy (TEM). Having been excited by 240 nm light at room temperature, GaN powder has a strong luminescence peak located at 395 nm and a weak luminescence peak located at 295 nm, attributed to GaN band-edge emission and blue-shift of the band-gap emission. Moreover, X-ray photoelectron spectroscopy (XPS) confirms the formation of the bond between Ga and N , and Raman scattering spectrum confirms A1 (TO) and E1 (TO) vibrational modes of GaN .


2016 ◽  
Vol 680 ◽  
pp. 193-197
Author(s):  
San Ti Yi ◽  
Si Qin Zhao

TiO2, 1%La/TiO2, 1%Ce/TiO2 and a series of Laand Ce co-doped TiO2 photocatalysts were prepared by sol-gel method. Using sol-gel method combine with hydrothermal method prepared rare earth La, Ce and nitrogen co-doped TiO2 photocatalysts. The microstructure, spectroscopy performance and ion doped form of prepared samples were characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy techniques and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of doped TiO2 were examined by measuring the photodegradation of methyl orange. The results showed that the products were all anatase TiO2 nano powder, doping Laor Cehinder the growth of TiO2 particle, further more, doping Laand Cetogether hinder the growth of TiO2 particle more effective, doping N broaden the light response range of TiO2 photocatalyst. At the same time, the photocatalytic activity results indicated that the prepared samples showed superior UV light photocatalytic activity, the sample 1% (La:Ce,9:1)-N/TiO2 showed the highest UV-vis photocatalytic activity.


Author(s):  
Ming-Yuan Shen ◽  
Chen-Feng Kuan ◽  
Hsu-Chiang Kuan ◽  
Cing-Yu Ke ◽  
Chin- Lung Chiang*

This study used the sol–gel method to synthesize a non-halogenated hyperbranched flame retardant containing nitrogen, phosphorus and silicon, HBNPSi, which was then added to a polyurethane (PU) matrix to form an organic–inorganic hybrid material. Using 29Si nuclear magnetic resonance, energy-dispersive X-ray spectroscopy of P- and Si-mapping, scanning electron microscopy, and X-ray photoelectron spectroscopy, this study determined the organic and inorganic dispersity, morphology, and flame retardance mechanism of the hybrid material. The condensation density of the hybrid material PU/HBNPSi was found to be 74.4%. High condensation density indicates a dense network structure of the material. The P- and Si-mapping showed that adding inorganic additives in quantities of either 20% or 40% results in homogeneous dispersion of the inorganic fillers in the polymer matrix without agglomeration, indicating that the organic and inorganic phases had excellent compatibility. In the burning test, adding HBNPSi to PU resulted in the material passing the UL-94 standard at the V2 level, unlike the pristine PU, which did not meet the standard. The results demonstrated that after non-halogenated flame retardant was added to PU, the material’s flammability and dripping were lower, thereby proving that flame retardants containing elements such as nitrogen, phosphorus, and silicon exert an excellent flame retardant synergistic effect.


2013 ◽  
Vol 785-786 ◽  
pp. 1547-1550
Author(s):  
Guang Fen Li ◽  
Jin Chao Zhang ◽  
Xu Dong Sun

Here a simple method was developed to fabricate hydrophilic Polyethersulphone film via a sol-gel process. The correspondent hydrophilicity was evaluated by infrared spectral analysis, X-ray photoelectron spectroscopy, the contact angle measurement, atomic force microscope and scanning electron microscope analysis, respectively. Both FTIR and XPS analysis indicated that the film surfaces have a relatively dense sol layer, which favors to become hydrophilic. AFM analysis demonstrated that the higher hydrophilicity was mainly attributed to the surface roughness, while SEM images show that the micro/nanometer crater-like protrusions appears on the film surfaces, whereas the spongy structures & the finger-like structures appear in cortex and intermediate layer respectively. This leads to the hydrophilic film forming after film being treated by sol-gel method.


2019 ◽  
Vol 31 (2) ◽  
pp. 896-902 ◽  
Author(s):  
Kei Kagami ◽  
Masanori Koshimizu ◽  
Yutaka Fujimoto ◽  
Syunji Kishimoto ◽  
Rie Haruki ◽  
...  

2012 ◽  
Vol 1449 ◽  
Author(s):  
Chen Zhao ◽  
Dan Jiang ◽  
Shundong Bu ◽  
Jinrong Cheng

ABSTRACTFerroelectric 0.7BiFeO3-0.3PbTiO3 (BFO-PT) films were deposited on stainless steel substrates by the sol-gel method. A thin layer of PbTiO3 (PT) was introduced between the substrates and BFO-PT films in order to decrease the annealing temperature of BFO-PT films. X-ray diffraction analysis reveals that BFO-PT films could be well crystallized into the perovskite structure at about 575 oC. Scanning electron microscope (SEM) images show that BFO-PT thin films have grain size of about 50∼60 nm. Our results indicated BFO-PT films deposited on stainless steel substrates maintained the excellent ferroelectric properties with remnant polarization of about 40∼50 μC/cm2.


2013 ◽  
Vol 631-632 ◽  
pp. 399-403
Author(s):  
Xi Ming Luo ◽  
Fen Fen Li ◽  
Hong Tao Gao

Sm, Zr doped nanocrystalline TiO2 powers were prepared successfully by a facile ultrasonic assisted sol-gel method. The products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. X-ray diffraction peaks could be assigned to anatase TiO2, which confirms the crystallinity of the as-prepared samples. The SEM images demonstrated that the crystalinity is formed with spherical aggregates with average diameters ranging from 10 to 20 nm. The photocatalytic activity was studied on the photocatalytic degradation of methyl orange (MO) aqueous solution irradiated with UV-visible light. Under UV-visible light irradiation, the photocatalytic performances of the doped samples were much better than that of pure TiO2, and the co-dopant showed highest. It demonstrated that a strong Sm-Zr synergistic interaction might play a decisive role in driving the excellent photocatalytic performance of TiO2.


Sign in / Sign up

Export Citation Format

Share Document