Study on High-Grade CNC Machine Tool Wear Monitoring Methods and Experimental System

2012 ◽  
Vol 591-593 ◽  
pp. 1844-1848
Author(s):  
Min Huang ◽  
Xiu Li Liu ◽  
Le Yan

Today, CNC machine tools are moving in the high-speed, high precision, heavy and complex processing of direction, leading to early failure in service due to machine performance, if not timely diagnosis and early warning, will result in waste increases, fluctuations in the quality, productivity decline.Therefore, to ensure reliable operation of CNC machine tools is very important.To build fault diagnosis of CNC machine tools and get test method as the goal, the tool wear experiments are carried out. Signals for cutting tool with different wear in milling process are detected,acquisited and analyzed through vibration sensors and acoustic emission sensors on the milling tools. To LabVIEW8.6 as development platform, a fault diagnosis experimental system of CNC machine tools is developed, including data acquisition module, signal analysis module, fault diagnosis module.

2019 ◽  
Vol 299 ◽  
pp. 04003
Author(s):  
Juraj Kundrík ◽  
Marek Kočiško ◽  
Martin Pollák ◽  
Monika Telišková ◽  
Anna Bašistová ◽  
...  

Modern CNC machine tools include a number of sensors that collect machine status data. These data are used to control the production process and for control of the CNC machine status. No less importantpart of the production process is also a machine tool. The condition of the cutting tool is important for the production quality and its failure can cause serious problems. Monitoring the condition of thecutting tool is complicated due to its dimensions and working conditions. The article describes how the tool wear can be predicted from the measured values of vibration and pressure by using neural networks.


2018 ◽  
Vol 224 ◽  
pp. 01020 ◽  
Author(s):  
Georgi M. Martinov ◽  
Akram Al Khoury ◽  
Ahed Issa

Nowadays, there is a big demand on using small sized CNC machine tools, which have low price tag, wide range of implementations, low manufacturing costs and can be used for educational purposes. These machines can achieve casual manufacturing routines, like milling and drilling in applications, where there is no need for high speed performances and super quality of products. In this work, we proposed a model of CNC for these machines and analysed its components and efficiency. The model consists of three main layers: CNC system (application layer), ARM based microcomputer as CAN master and controller (connecting layer) and Servo-Drive Step Motors (actuating layer).


Manufacturing ◽  
2003 ◽  
Author(s):  
Donald Esterling ◽  
F. Donald Caulfield ◽  
Aaron Kiefer ◽  
Gregory Buckner ◽  
Pavan Jaju

The frequency response function (FRF) of a CNC machine tool is composed of tool/toolholder/spindle dynamics, and plays an important role in determining the stability of high speed machining processes. This paper details the design, development and operational verification of a non-contacting, controllable, electromechanical actuator (EMA) for measuring the FRFs of tools mounted in CNC milling machines. Although standard modal testing methods are available and provide similarly accurate results, these test procedures are difficult to perform in machine shop environments and can require expensive equipment. The EMA developed as part of this research extends the capabilities of the NIST “best speeds device” to provide controllable, non-contacting excitation for modal tests on machine tools. This EMA device offers the advantages of being accurate, easy to use, and applicable to a wide variety of tools and operating conditions.


Sign in / Sign up

Export Citation Format

Share Document