Numerical Simulation of Convection Heat Transfer in a Plate Channel with Sintered Copper Porous Ribs
Convection heat transfer in a plate channel periodically fitted with sintered copper porous ribs attached to a copper plate was numerically studied. The local thermal equilibrium model was adopted in the energy equation to evaluate the temperature of fluid and solid. The effect of porosity, Reynolds number and heat flux applied to the copper plate on the heat transfer characteristic of the porous media was investigated respectively. The numerical results show that the heat transfer can be enhanced by increasing Reynolds number, decreasing the porosity and the heat transfer enhancement of the porous media took effect significantly when subjected to high heat flux. Detailed development of the porous media temperature field and the Nusselt number of the wall as a function of Reynolds number for different porosity and heat flux were also presented.