Modeling CO2 Emissions of Top 5 Emitters with Combination Technique
In this paper, the performance of combination forecast methods for CO2 emissions prediction is investigated. Linear model, time series model, GM (1, 1) model and Grey Verhulst model are selected in study as the separate models. And, four kinds of combination forecast models, i.e. the equivalent weight (EW) combination method, variance-covariance (VACO) combination method, regression combination (R) method, and discounted mean square forecast error (MSFE) method are chosen to employ for top 5 CO2 emitters. The forecasting accuracy is compared between these combination models and single models. This research suggests that the combination forecasts are almost certain to outperform the worst individual forecasts and maybe even better than most individual ones. Furthermore the combination forecasts can avoid the risk of model choosing in future projection. For CO2 emissions forecast with many uncertain factors in the future, combining the single forecast would be safer in such forecasting situations.