Characteristics of Wind Loads Acting on Complex Long-Span Roof Structure

2013 ◽  
Vol 639-640 ◽  
pp. 523-529
Author(s):  
Fu Bin Chen ◽  
Q.S. Li

The Shenzhen New Railway Station (SNRS) has roof dimensions of 450 m long and 408 m wide. This paper presents the results of wind loads acting on the large-span roof structure. In the wind tunnel test, wind-induced pressures including mean and fluctuating components were measured from the roof of a 1:200 scale SNRS model under suburban boundary layer wind flow configuration in a boundary layer wind tunnel of HD-2 at Hunan University. Based on the data obtained simultaneously from the wind tunnel tests, the distributions of the mean and fluctuating wind pressure coefficients and the characteristics of probability density functions of wind pressures of typical pressure taps were analyzed in detailed. The outcomes of the experimental study indicate that: (1) The maximum mean negative wind pressure coefficients on the roof occur at the windward leading edge region, where the maximum fluctuating wind pressure coefficients occur also in this region; (2) There are some differences of the maximum mean negative wind pressure coefficients and RMS wind pressure coefficients under conditions with different number of trains inside the station, but such effects on the overall pressure distributions on the whole roof are negligible; (3) There are clearly negative skewed distributions for some pressure taps at the windward leading roof edge and much longer negative tails are observed, which follow Non-Gaussian distributions. The results presented in this paper are expected to be of considerable interest and of use to researchers and professionals involved in designing complex long-span roof structures.

Author(s):  
Astha Verma ◽  
Ashok Kumar Ahuja

Wind is one of the important loads to be considered while designing the roofs of low-rise buildings. The structural designers refer to relevant code of practices of various countries dealing with wind loads while designing building roofs. However, available information regarding wind pressure coefficients on cylindrical roofs is limited to single span only. Information about wind pressure coefficients on multi-span cylindrical roofs is not available in standards on wind loads. Present paper describes the details of the experimental study carried out on the models of low-rise buildings with multi-span cylindrical roofs in an open circuit boundary layer wind tunnel. Wind pressure values are measured at many pressure points made on roof surface of the rigid models under varying wind incidence angles. Two cases namely, single-span and two-span are considered. The experimental results are presented in the form of contours of mean wind pressure coefficients. Results presented in the paper are of great use for the structural designers while designing buildings with cylindrical roofs. These values can also be used by the experts responsible for revising wind loading codes from time to time.


2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Fu-Bin Chen ◽  
Xiao-Lu Wang ◽  
Yun Zhao ◽  
Yuan-Bo Li ◽  
Qiu-Sheng Li ◽  
...  

High-rise buildings are very sensitive to wind excitations, and wind-induced responses have always been the key factors for structural design. Facade openings have often been used as aerodynamic measures for wind-resistant design of high-rise buildings to meet the requirement of structural safety and comfort. Obvious wind speed amplifications can also be observed inside the openings. Therefore, implementing wind turbines in the openings is of great importance for the utilization of abundant wind energy resources in high-rise buildings and the development of green buildings. Based on numerical simulation and wind tunnel testing, the wind loads and wind speed amplifications on high-rise buildings with openings are investigated in detail. The three-dimensional numerical simulation for wind effects on high-rise building with openings was firstly carried out on FLUENT 15.0 platform by SST k − ε model. The mean wind pressure coefficients and the wind flow characteristics were obtained. The wind speed amplifications at the opening were analyzed, and the distribution law of wind speed in the openings is presented. Meanwhile, a series of wind tunnel tests were conducted to assess the mean and fluctuating wind pressure coefficients in high-rise building models with various opening rates. The variation of wind pressure distribution at typical measuring layers with wind direction was analyzed. Finally, the wind speed amplifications in the openings were studied and verified by the numerical simulation results.


2011 ◽  
Vol 71-78 ◽  
pp. 666-672
Author(s):  
Wen Bo Sun ◽  
Qing Xiang Li ◽  
Han Xiang Chen ◽  
Wei Jian Zhou

In this paper, the system and the design philosophy of wheel-spoke cable-membrane structure of Baoan Stadium is introduced firstly. And then the study of wind tunnel test on 1:250 scale model is mainly presented, together with the numerical calculation of the wind dynamic response. Finally, the wind-resistant design of the roof structure based on the results of wind tunnel test and the foreign design codes is generally introduced.


2011 ◽  
Vol 94-96 ◽  
pp. 1026-1030
Author(s):  
Yue Ming Luo ◽  
Yue Yin ◽  
Xi Liang Liu

Due to the increasing of wind disaster, structural wind engineering arouses more and more attention recently, with rapid development on spatial structure and continuous innovation of structural style. The main purpose of structural wind engineering is to calculate the wind pressure coefficients of structure. In this paper, the numerical wind tunnel method (NWTM), based on the Computational Fluid Dynamics (CFD), is applied to study wind load. The wind pressure coefficients of reticulated spherical shell with the 4.6m high wall were first determined, using the NWTM. The results are then compared with the wind tunnel test (WTT) and good agreement is found. The feasibility and reliability of NWTM were then verified. As the second example, NWTM is carried out to predict wind-induced pressure on reticulated spherical shell without wall. Further the distribution behavior of wind pressures on this kind of structures is discussed which could provide professionals the reference for the design of structure.


Author(s):  
Daniel Barcarolo ◽  
Yann Andrillon ◽  
Erwan Jacquin ◽  
Alain Ledoux

The accurate evaluation of wind loads applied on floating offshore structures is extremely important as they are in specific conditions one of the dimensioning criteria for the mooring design. Nowadays these loads are mainly assessed through wind tunnel tests performed at model scale. Estimating realistic wind loads however, remains a big challenge. The complexity and associated simplification level of FPSO topside structures, the scale effects and the establishment of the atmospheric boundary layer imply that many simplifications are to be made. Typically, the FPSO topside is greatly simplified and equivalent blocs of wired frame are used. Today with the evolution of CFD software, and the increase of the meshing capacity, new scopes open to CFD. Aerodynamic simulations on complex FPSO structures are therefore now possible, but need specific developments and validations that are presented in this paper. The main objective of the work presented is to investigate the ability of CFD to evaluate wind loads on complex FPSOs topsides and to provide information on the impact of model simplifications made in wind tunnels. In a first stage, the numerical model was intensively validated by comparing its results to a wind tunnel test case. The numerical model was developed in order to ensure the quality of the results and enable a relevant comparison that was obtained with grids density up to 30 million cells. For this purpose, the geometric model used corresponds to the one used in wind tunnel. The same Atmospheric Boundary Layer was simulated and a thorough effort was performed to ensure the mesh convergence. In a second stage, more physical aspects of the wind tunnel methodology were investigated. Typically the accuracy of the blockage effect correction was evaluated by performing computations with and without blockage, and results were compared with classical corrections applied in wind tunnel. The impacts of the Atmospheric Boundary Layer on wind loads have also been investigated. Finally, the wind load contribution of each component of the FPSO was evaluated.


2013 ◽  
Vol 639-640 ◽  
pp. 515-522
Author(s):  
Yong Gui Li ◽  
Q.S. Li

Wind tunnel test of 1:500 rigid model of tall building with atrium was carried out. Based on the experimental results, characteristics of wind pressures on atrium facades and wind loads on the structure were investigated in detail. The results show that the formation of flow separation on the building top plays a critical role in the generation of wind pressures on the atrium facades. Meanwhile, wind pressure coefficient distributions on the atrium facades are found to be relatively uniform. Moreover, the horizontal and vertical correlations of pressure coefficient exhibit high at most locations on atrium facades. With the increasing of the opening ratio, the mean wind pressure coefficients first decreased and then stabilized, and the fluctuating wind pressure coefficients first decreased and then increased. A design guideline for the wind-resistant design of atrium facades was proposed, and the results predicted by the proposed guideline were in good agreement with those from the wind tunnel tests, indicating that the proposed guideline can be used in engineering applications. When the opening ratio is no more than 5.33%, the effect of the facade pressures within the atrium on the wind loads on the structure can be ignored. For such cases, the wind-resistant design for a tall building with atrium can refer to that of a similar shape tall building without atrium.


2019 ◽  
Vol 304 ◽  
pp. 02020
Author(s):  
Biagio Della Corte ◽  
André A.V. Perpignan ◽  
Martijn van Sluis ◽  
Arvind Gangoli Rao

Junction flow caused by the aerodynamic interaction between a wind-tunnel model and the support structure can largely influence the flowfield and hence the experimental results. This paper discusses a combined numerical and experimental study which was carried out to mitigate the model–support interference in a wind-tunnel test setup for the study of fuselage boundary-layer ingestion. The setup featured an axisymmetric fuselage mounted through a support beam, covered by a wing-shaped fairing. The junction flow appearing at the fuselage–fairing connection produced undesired flow distortions at the fuselage aft section, due to the formation of an horseshoe vortex structure at the fairing leading edge. Numerical and experimental analysis were performed with the aim of reducing the distortion intensity by improving the fairing design. Results show that modifying the leading-edge shape of the fairing effectively decreased the flowfield distortions. Moreover, the addition of a dummy fairing diametrically opposed to the first one was found to be beneficial due to the enhancement of the configuration symmetry.


Author(s):  
Neelam Rani ◽  
Ashok Kumar Ahuja

The present study gives information related to wind pressure distribution on single span and multi span circular canopy roofs. The experiments are carried out in an open circuit boundary layer wind tunnel. Wind pressure is measured on both upper and lower roof surfaces of circular canopy roof model made of Perspex sheet. Models are tested under varying wind incidence angles between 0° and 90° at an interval of 15° on isolated model and 0° to 180° at an interval of 30° on models with multi-span canopy roof. Values of mean wind pressure coefficients are evaluated from the measured values of wind pressures. Results of the study are presented in the form of contours, cross sectional variation and face average values of pressure coefficients. The results of the study are of great use for the structural designers for designing circular canopy roofs.


Author(s):  
Astha Verma ◽  
Ashok Kumar Ahuja

Present paper describes details of the experimental study carried out on the models of industrial building with north-light roof in order to generate the information about wind pressure distribution on it. The models are tested in a closed circuit boundary layer wind tunnel to measure values of wind pressures on roof surface. Four cases namely one, two, three and four spans are considered. The side of Perspex sheet model in case of multi-span study places plywood models. Wind is made to hit the models at 13 wind incidence angles from 0° to 180° at an interval of 15°. Values of mean wind pressure coefficients are evaluated from the measured values of wind pressures and contours are plotted.


2014 ◽  
Vol 525 ◽  
pp. 397-402
Author(s):  
Jian Guo Zhang ◽  
Hui Min Zhuang

Taking a long-span retractable roof structure, which locates in a coastal city of China, as an example, a wind tunnel test on a rigid model was carried out. This paper analyzes the wind load characteristics of this structure under three conditions: open, closed and closed with damage in small area of windows. The block shape coefficients as well as its variation with wind direction are given; meanwhile, this paper analyzes the fluctuation characteristics of wind load, obtaining the gust coefficient as well as the variation of fluctuation coefficients with wind direction, which can be applied to the design of coating members in this structure. By comparing the analysis results under three conditions, the following conclusion can be reached: the long-span structure is more resistant against mean wind load when the roof is open than when it is closed. There is no decrease in fluctuating wind load and in some wind directions; the fluctuating wind load will be even larger. Additionally, the damage in small area of windows does not much affect the wind load characteristics on structure.


Sign in / Sign up

Export Citation Format

Share Document