Reinforcement of B4C Ceramics with Multi-Walled Carbon Nanotubes

2009 ◽  
Vol 66 ◽  
pp. 41-44 ◽  
Author(s):  
Fan Zhang ◽  
Zheng Yi Fu ◽  
Jin Yong Zhang ◽  
Hao Wang ◽  
Wei Min Wang ◽  
...  

Here we have prepared B4C/CNTs composites using the spark-plasma sintering (SPS) method. Mechanical property measurements reveal obvious enhancement confirming the fabrication of true B4C/CNTs composite materials with improved toughness properties.The addition of 1wt% CNTs in the B4C increased the fracture toughness by about 1.6 times from 2.5 to 4 MPa.m1/2 because the CNTs presented at the B4C grain boundaries, made the length of cracks shorten.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1150
Author(s):  
Nicolás A. Ulloa-Castillo ◽  
Roberto Hernández-Maya ◽  
Jorge Islas-Urbano ◽  
Oscar Martínez-Romero ◽  
Emmanuel Segura-Cárdenas ◽  
...  

This article focuses on exploring how the electrical conductivity and densification properties of metallic samples made from aluminum (Al) powders reinforced with 0.5 wt % concentration of multi-walled carbon nanotubes (MWCNTs) and consolidated through spark plasma sintering (SPS) process are affected by the carbon nanotubes dispersion and the Al particles morphology. Experimental characterization tests performed by scanning electron microscopy (SEM) and by energy dispersive spectroscopy (EDS) show that the MWCNTs were uniformly ball-milled and dispersed in the Al surface particles, and undesirable phases were not observed in X-ray diffraction measurements. Furthermore, high densification parts and an improvement of about 40% in the electrical conductivity values were confirmed via experimental tests performed on the produced sintered samples. These results elucidate that modifying the powder morphology using the ball-milling technique to bond carbon nanotubes into the Al surface particles aids the ability to obtain highly dense parts with increasing electrical conductivity properties.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 373
Author(s):  
Nicolás A. Ulloa-Castillo ◽  
Oscar Martínez-Romero ◽  
Roberto Hernandez-Maya ◽  
Emmanuel Segura-Cárdenas ◽  
Alex Elías-Zúñiga

This paper focuses on reporting results obtained by the spark plasma sintering (SPS) consolidation and characterization of aluminum-based nanocomposites reinforced with concentrations of 0.5 wt%, 1 wt% and 2 wt% of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). Experimental characterization performed by SEM shows uniform carbon nanotube (CNT) dispersion as well as carbon clusters located in the grain boundary of the Al matrix. The structural analysis and crystallite size calculation were performed by X-ray diffraction tests, detecting the characteristic CNT diffraction peak only for the composites reinforced with MWCNTs. Furthermore, a considerable increment in the crystallite size value for those Al samples reinforced and sintered with 1 wt% of CNTs was observed. Hardness tests show an improvement in the composite surface hardness of about 11% and 18% for those samples reinforced with 2 wt% of SWNCTs and MWCNTs, respectively. Conductivity measurements show that the Al samples reinforced with 2 wt% of MWCNTs and with 0.5 wt% SWCNTs reach the highest IACS values of 50% and 34%, respectively.


2013 ◽  
Vol 45 (2) ◽  
pp. 233-243 ◽  
Author(s):  
Dj. Veljovic ◽  
G. Vukovic ◽  
I. Steins ◽  
E. Palcevskis ◽  
P.S. Uskokovic ◽  
...  

Composites based on HAP and oxidized multi-walled carbon nanotubes (o-MWCNT) and monophase HAP materials were processed by spark plasma sintering. Starting from stoichiometric nano-sized HAP powder, monophase bioceramics were obtained with a density close to the theoretical one and with an average grain size of several hundred nanometers to micron dimensions. It was shown that decreasing the sintering temperature resulted in a decrease of the grain size, which affected an increase in the fracture toughness and hardness. The fracture toughness of an HAP/ o-MWCNT bioceramic processed at 900?C for only 5 min was 30 % higher than that of monophase HAP materials obtained under the same conditions. The addition of MWCNT during SPS processing of HAP materials caused a decrease in the grain size to the nano-dimension, which was one of the reasons for the improved mechanical properties.


2020 ◽  
Vol 10 ◽  
pp. 56-68
Author(s):  
A. A. Leonov ◽  
◽  
E. V. Abdulmenova ◽  
M. P. Kalashnikov ◽  
◽  
...  

In this work, composites based on yttria-stabilized zirconia (3Y-TZP), with additives of 1, 5 and 10 wt. % multi-walled carbon nanotubes (MWCNTs) were investigated. Samples were obtained by spark plasma sintering at a temperature of 1500 °C. It was found that MWCNTs retain their structure after high-temperature sintering, they are located along the grain boundaries of ZrO2, forming a network structure. Found that the addition of 1 wt. % MWCNTs increase the relative density of the composite from 98.3 % to 99.0 %. It is noted that nanotubes can significantly affect the phase composition of composites. Additive 5 wt. % MWCNT partially limits the monoclinic-tetragonal phase transition of ZrO2, and the addition of 10 wt. % MWCNTs leads to the formation of a cubic phase of zirconium carbide. It was found that the fracture toughness of the composite with 10 wt. % MWCNTs increases from 4.0 to 5.7 MPa·m1/2.


2017 ◽  
Vol 53 (5) ◽  
pp. 3225-3238 ◽  
Author(s):  
Ch. Laurent ◽  
T. M. Dinh ◽  
M.-C. Barthélémy ◽  
G. Chevallier ◽  
A. Weibel

2017 ◽  
Vol 12 (4) ◽  
pp. 93-101 ◽  
Author(s):  
Hussein Alaa Jaber

In this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show that the relative density, microhardness and fracture strength of nanocomposites are significantly improved at low contents of Cr2O3 and MWCNTs. The increase of MWCNT’s content in the nanocomposites has adversely affected due to increasing the tangle and interaction of MWCNTs with each other, which leads to agglomeration in the nanocomposites. Increasing of Cr2O3 content in nanocomposites increases formation of Al2O3-Cr2O3 solid solution that actually requires the high sintering temperature to achieve good densification. The fracture toughness of Al2O3/Cr2O3-MWCNTs nanocomposites was enhanced by increasing the carbon nanotube content.


Sign in / Sign up

Export Citation Format

Share Document