Development of Multilayer Composition Thin Film Thermocouple Cutting Temperature Sensor Based on Magnetron Sputtering

2009 ◽  
Vol 69-70 ◽  
pp. 515-519 ◽  
Author(s):  
Yun Xian Cui ◽  
Bao Yuan Sun ◽  
W.Y. Ding ◽  
F.D. Sun

In the paper, a new multilayer composition thin film thermocouple was developed, which can accurately measure the temperature nearby cutting edge in convenient and fast ways. By means of advanced Twinned microwave ECR plasma source enhanced Radio Frequency (RF) reaction non-balance magnetron sputtering technique, SiO2 insulating film, NiCr/NiSi sensor film and SiO2 protecting film were deposited on the surface HSS substrate. Both static calibration and dynamic calibration were completed. The results showed that the sensor had good performance, good linearity, quick dynamic response, response time constant was 12.7ms. The temperature near the cutting edge in cutting process of aluminum alloy was measured by the developed sensor. The bonding strength between multiple layer film and substrate of high-speed-steel met the presupposed demands.

2011 ◽  
Vol 467-469 ◽  
pp. 134-139 ◽  
Author(s):  
Qi Yong Zeng ◽  
Tao Hong ◽  
Le Chen ◽  
Yun Xian Cui

Temperature plays a vital role in the machining industry today. A Nickel-Chrome versus Nickel-Silicon thin-film thermocouple system has been established for measuring instantaneous workpiece temperature in chemical explosive material machining. The NiCr/NiSi thin-film thermocouples have been deposited inside high speed steel cutters by magnetron sputtering. The typical deposition conditions are summarized. Static and dynamic calibrations of the NiCr/NiSi thin-film thermocouples are presented. The Seebeck coefficient of the TFTC is 40.4 μV/°C which is almost the same as that of NiCr/NiSi wire thermocouple. The response time is about 0.42ms. The testing results indicate that the developed NiCr/NiSi thin-film thermocouple sensors can respond fast enough to catch the very short temperature pulse and perform excellently when machining chemical explosive material in situ.


2005 ◽  
Vol 128 (1) ◽  
pp. 175-179 ◽  
Author(s):  
Qiyong Zeng ◽  
Baoyuan Sun ◽  
Jing Xu ◽  
Xinlu Deng ◽  
Jun Xu ◽  
...  

Temperature plays a vital role in the machining industry today. With increasing cutting speeds being used in machining operations, the thermal aspects of cutting have become more important. A nickel-chrome versus nickel-silicon thin-film thermocouple system has been established for measuring instantaneous workpiece temperature in chemical explosive material machining. The thin-film thermocouples have been directly deposited inside high-speed steel cutters by means of multiple arc ion plating and the thickness of the thermocouple junction is only a few micrometers. The research effort has been concentrated on developing solutions to the insulating problem between the thin-film thermocouples and the high-speed steel cutters. SiO2 insulating films have been deposited on the high-speed steel substrates by microwave electron cyclotron resonance plasma source enhanced radiofrequency (rf) reactive magnetron sputtering. Static and dynamic calibrations of the NiCr∕NiSi thin-film thermocouples are presented. The results of the testing indicate that the thin-film thermocouples have good linearity, little response time, and perform excellently when machining in situ.


2016 ◽  
Vol 693 ◽  
pp. 1585-1590
Author(s):  
Yi Zhuo Guo ◽  
Xian Guo Yan ◽  
Shu Juan Li ◽  
Hong Guo

Many studies have proved the service life of cutter can be prolonged by electrolytic strengthening. Based on the theory of electrolytic strengthening technology, this paper introduced and developed prototype equipment for strengthening cutting edge of rotary cutter and put forward a calculation method of total electric quantity consumption during the electrolysis suitable for microcontroller. The M8 high-speed steel tap is taken as a strengthening example. After finished the strengthening process that it clearly see the results of the surface of tap was obviously polished by observing the micrograph. This equipment improves the reliability of electrolytic strengthening and the cost is relatively cheap.


2020 ◽  
Vol 41 (2) ◽  
pp. 160-168
Author(s):  
I. A. Rastegaev ◽  
I. I. Rastegaeva ◽  
D. L. Merson ◽  
V. A. Korotkov

2000 ◽  
Author(s):  
Paul A. Clayton ◽  
Mohamed A. Elbestawi ◽  
Tahany El-Wardany ◽  
Dan Viens

Abstract This paper presents a five-axis milling force model that can incorporate a variety of cutters and workpiece materials. The mechanistic model uses a discretized cutting edge to calculate an area of intersection which is multiplied by the specific cutting pressure to produce a force output along the primary cartesian coordinate system. By using an analytic description of the cutting edge with a non-specific cutter and workpiece intersection routine, a model was created that can describe a variety of cutting situations. Furthermore, a back propagation neural network is used to calibrate the model, providing robustness and scalability to the calibration process. Testing was performed on 1020 steel using various cutting parameters with a high speed steel two flute cutter and a tungsten carbide insert cutter. Furthermore, both linear cuts and a test die surface yielded good agreement between predicted and measured results.


2010 ◽  
Vol 66 ◽  
pp. 35-40 ◽  
Author(s):  
Erdem Baskurt ◽  
Tolga Tavşanoğlu ◽  
Yücel Onüralp

SiC films were deposited by reactive DC magnetron sputtering of high purity (99.999%) Si target. 3 types of substrates, AISI M2 grade high speed steel, glass and Si (100) wafer were used in each deposition. The effect of different CH4 flow rates on the microstructural properties and surface morphologies were characterized by cross-sectional FE-SEM (Field-Emission Scanning Electron Microscope) observations. SIMS (Secondary Ion Mass Spectrometer) depth profile analysis showed that the elemental film composition was constant over the whole film depth. XRD (X-Ray Diffraction) results indicated that films were amorphous. Nanomechanical properties of SiC films were also investigated.


2019 ◽  
Vol 130 ◽  
pp. 01031 ◽  
Author(s):  
The Jaya Suteja ◽  
Yon Haryono ◽  
Andri Harianto ◽  
Esti Rinawiyanti

Polyacetal is commonly used as bushing material because of its low coefficient of friction and self lubricant characteristics. The polyacetal is machined by using boring process to produce bushing in certain surface roughness. The objectives of this research are to optimize three independent parameters (depth of cut, feed rate and principal cutting edge angle) of boring process of polyacetal using high speed steel tool to achieve the highest material removal rate and the required surface roughness. Response Surface Methodology is used to investigate the influence of the parameters and optimize the boring process. The research shows that the influence of the boring process parameters on polyacetal is similar compared to on metal. The result reveals that the optimum result is achieved by applying the value of depth of cut, feed rate, and principal cutting edge angle is 2.9 × 10–3 m, 0.229 mm rev–1, and 99.1° respectively. By applying these values, the maximum material rate removal achieved in this research is 1263.4 mm3 s–1 and the surface roughness achieved is 1.57 × 10–6 m.


Sign in / Sign up

Export Citation Format

Share Document