An Energy Saving Train Operation Control Model Based on Time-Space Network Formulation

2013 ◽  
Vol 711 ◽  
pp. 562-565
Author(s):  
Hui Hu

From operation management strategy perspective, a multi-objective time-space network optimization model of train energy consumption on a high speed rail line is proposed on the basis of train time table predetermined. The models objectives are to minimize circulation of rail stock and total energy consumption, and decision variables are number of train units in stations, while constraints include node flow conservation, passenger demand and capacity limitation. Finally, a simulation case is provided and solved for comparison and an optimization analysis is carried on via weighting method to illustrate the models feasibility and effectiveness.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Bisheng He ◽  
Rui Song ◽  
Shiwei He ◽  
Yue Xu

A time-space network based optimization method is designed for high-speed rail train timetabling problem to improve the service level of the high-speed rail. The general time-space path cost is presented which considers both the train travel time and the high-speed rail operation requirements: (1) service frequency requirement; (2) stopping plan adjustment; and (3) priority of train types. Train timetabling problem based on time-space path aims to minimize the total general time-space path cost of all trains. An improved branch-and-price algorithm is applied to solve the large scale integer programming problem. When dealing with the algorithm, a rapid branching and node selection for branch-and-price tree and a heuristic train time-space path generation for column generation are adopted to speed up the algorithm computation time. The computational results of a set of experiments on China’s high-speed rail system are presented with the discussions about the model validation, the effectiveness of the general time-space path cost, and the improved branch-and-price algorithm.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Li Wang ◽  
Yong Qin ◽  
Jie Xu ◽  
Limin Jia

A fuzzy optimization model based on improved symmetric tolerance approach is introduced, which allows for rescheduling high-speed railway timetable under unexpected interferences. The model nests different parameters of the soft constraints with uncertainty margin to describe their importance to the optimization purpose and treats the objective in the same manner. Thus a new optimal instrument is expected to achieve a new timetable subject to little slack of constraints. The section between Nanjing and Shanghai, which is the busiest, of Beijing-Shanghai high-speed rail line in China is used as the simulated measurement. The fuzzy optimization model provides an accurate approximation on train running time and headway time, and hence the results suggest that the number of seriously impacted trains and total delay time can be reduced significantly subject to little cost and risk.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Dingjun Chen ◽  
Sihan Li ◽  
Junjie Li ◽  
Shaoquan Ni ◽  
Xiaolong Liu

Timetable optimization techniques offer opportunity for saving energy and hence reducing operational costs for high-speed rail services. The existing energy-saving timetable optimization is mainly concentrated on the train running state adjustment and the running time redistribution between two stations. Not only the adjustment space of timetables is limited, but also it is hard for the train to reach the optimized running state in reality, and it is difficult to get feasible timetable with running time redistribution between two stations for energy-saving. This paper presents a high-speed railway energy-saving timetable based on stop schedule optimization. Under the constraints of safety interval and stop rate, with the objective of minimizing the increasing energy consumption of train stops and the shortest travel time of trains, the high-speed railway energy-saving timetable optimization model is established. The fuzzy mathematics programming method is used to design an efficient algorithm. The proposed model and algorithm are demonstrated in the actual operation data of Beijing-Shanghai high-speed railway. The results show that the total operating energy consumption of the train is reduced by 3.7%, and the total travel time of the train is reduced by 11 minutes.


Author(s):  
Jack E. Heiss

While planners and politicians alike go about kicking the tires of various trains, and traveling abroad on fact-finding missions about HSR, the question remains whether Americans will patronize high-speed rail in sufficient number to justify the investment. A common practice is to identify an existing or abandoned rail line as the candidate route that connects population centers, identify the former stations for rehabilitation, select a technology, and then perform an investment-grade ridership study to determine whether sufficient revenues will be generated. This approach may prove sufficient in the upgrading of an existing conventional service, or re-establishing a previous service in those areas of the country with a long history of passenger rail. When approaching newer developed areas such as the Sunbelt cities, the inter-relationship of development patterns and fixed-guideway passenger services is not established. Those development patterns were influenced by the automobile, not by guideway-based transportation. A different approach is needed when history is not a guide. While the selection of the population centers to be served at the outset is appropriate and makes for a basic identification of the market to be served, it does not reveal the actual destinations that are interest to the travelers. The next step is to more thoroughly investigate travel between those points. That investigation should include surveys to determine trip purpose, identify the main attractors in the markets, the demographics of the travelers and how time is valued by the travelers. Finally, estimates must be made of the absolute numbers of those traveling. Additionally, examination of the current travel patterns through the patronage of existing services can provide clues to the market demand. The acquisition of this market information then allows the planners to design a transportation product that will appeal to the potential customers and make a determination of potential revenue. Even when certain parameters of a system are set because of geography or availability of infrastructure, market information can guide improvements to maximize market capture. This paper will examine those data that are important to a high-speed rail plan and how some system decisions directly affect the ability of the transportation product offered to satisfy the needs of the traveling public. “Build it and they will come” cannot be trusted to repay the massive investment required by high-speed rail.


2014 ◽  
Vol 505-506 ◽  
pp. 632-636 ◽  
Author(s):  
Peng Fei Zhou ◽  
Bao Ming Han ◽  
Qi Zhang

The development of high-speed railway has been very fast, while there are still existing many problems to be further studied and discussed, especially the design of high-speed railway Train stops program. The research of classification of high-speed passenger railway nodes has a vital significance for forecast of high-speed railway passenger flow, passenger train operation plan, evaluation and optimization and so on, especially for highspeed railway stopping schedule .This paper analyzes the significance and methods of high-speed passenger railway nodes classification, and designs high-speed rail train line stops program based on the classification. Finally, analyzing the case on the basis of Beijing-Guangzhou high-speed railway, a train stops program will be made bases on the classification of Beijing-Guangzhou high-speed railway passenger transport nodes to verify the feasibility of this study.


Sign in / Sign up

Export Citation Format

Share Document