Thermo-Mechanical Behavior of Epoxy Shape Memory Polymer

2013 ◽  
Vol 721 ◽  
pp. 169-172 ◽  
Author(s):  
Yu Gu ◽  
Shao Xiong Li

The viscoelastic behaviors of shape memory polymers have a significant influence on the function realization of this kind of smart materials. In this study, stress-strain hysteresis under uniaxial tension of epoxy shape memory polymers with varied curing agent contents and types were tested at different temperatures. The effects of the testing temperature, curing-agent type and content on the viscoelastic behaviors of the materials were discussed.

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 710 ◽  
Author(s):  
Ela Sachyani Keneth ◽  
Rama Lieberman ◽  
Matthew Rednor ◽  
Giulia Scalet ◽  
Ferdinando Auricchio ◽  
...  

Shape memory polymers are attractive smart materials that have many practical applications and academic interest. Three-dimensional (3D) printable shape memory polymers are of great importance for the fabrication of soft robotic devices due to their ability to build complex 3D structures with desired shapes. We present a 3D printable shape memory polymer, with controlled melting and transition temperature, composed of methacrylated polycaprolactone monomers and N-Vinylcaprolactam reactive diluent. Tuning the ratio between the monomers and the diluents resulted in changes in melting and transition temperatures by 20, and 6 °C, respectively. The effect of the diluent addition on the shape memory behavior and mechanical properties was studied, showing above 85% recovery ratio, and above 90% fixity, when the concentration of the diluent was up to 40 wt %. Finally, we demonstrated multi-material printing of a 3D structure that can be activated locally, at two different temperatures, by two different stimuli; direct heating and light irradiation. The remote light activation was enabled by utilizing a coating of Carbon Nano Tubes (CNTs) as an absorbing material, onto sections of the printed objects.


Author(s):  
L. Santo ◽  
L. Iorio ◽  
G. M. Tedde ◽  
F. Quadrini

Shape Memory Polymer Composites (SMPCs) are smart materials showing the structural properties of long-fiber polymer-matrix together with the functional behavior of shape memory polymers. In this study, SM carbon fiber reinforced (CFR) composites have been produced by using a SM interlayer between two CFR prepregs. Their SM properties have been evaluated in comparison with traditional structural CFR composites without the SM interlayer by using an especially designed test. Active and frozen forces are measured during a thermo-mechanical cycle in the three-point bending configuration. Experimental results show that SMPCs are able to fix a temporary deformed shape by freezing high stresses.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4246 ◽  
Author(s):  
Yujie Chen ◽  
Chi Chen ◽  
Hafeez Ur Rehman ◽  
Xu Zheng ◽  
Hua Li ◽  
...  

Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. Recently, significant achievements have been made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face concerning actuation. While shape-memory behavior has been demonstrated in several stimulated environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.


2020 ◽  
Vol 31 (10) ◽  
pp. 1243-1283 ◽  
Author(s):  
Ebrahim Yarali ◽  
Ali Taheri ◽  
Mostafa Baghani

Shape memory polymers are a class of smart materials, which are capable of fixing their deformed shapes, and can return to their original shape in reaction to external stimulus such as heat. Also due to their exceptional properties, they are mostly used in four-dimensional printing applications. To model and investigate thermomechanical response of shape memory polymers mathematically, several constitutive equations have been developed over the past two decades. The purpose of this research is to provide an up-to-date review on structures, classifications, applications of shape memory polymers, and constitutive equations of thermally responsive shape memory polymers and their composites. First, a comprehensive review on the properties, structure, and classifications of shape memory polymers is conducted. Then, the proposed models in the literature are presented and discussed, which, particularly, are focused on the phase transition and thermo-viscoelastic approaches for conventional, two-way as well as multi-shape memory polymers. Then, a statistical analysis on constitutive relations of thermally activated shape memory polymers is carried out. Finally, we present a summary and give some concluding remarks, which could be helpful in selection of a suitable shape memory polymer constitutive model under a typical application.


2008 ◽  
Vol 47-50 ◽  
pp. 690-693 ◽  
Author(s):  
Da Wei Zhang ◽  
Jin Song Leng ◽  
Yan Ju Liu

This paper is concerned about the synthesis of shape memory styrene copolymer and the investigation of the influence of radialization dosage on its shape memory effect. As one of novel actuators in smart materials, shape memory polymers (SMPs) have been investigated intensively. Styrene copolymer with proper cross-linking degree can exhibit shape memory effect (SME). In this paper, the influence of radialization on shape memory effect of styrene copolymer was investigated through altering the dosage of radialization. The radialization dosage of styrene copolymer was determined by changed radicalization time. The glass transition temperature (Tg) of styrene copolymerwas measured by Dynamic Mechanical Analysis (DMA). The shape memory performance of styrene copolymer with different radiated dosage was also evaluated. Results indicated that the shape memory polymer (SMP) was synthesized successfully. The Tg increased from 60°C to 65°C followed by increasing the radialization dosage. Moreover, the SMP experienced good SME and the largest reversible strain of the SMP reached as high as 150%. When heating above Tg+30°C (different copolymers performed different Tg), the shape recovery speed of the copolymers increased with increasing the radialization dosage. However, the recovery speed decreased with increasing the radialization dosage at the same temperature of 95°C.


2011 ◽  
Vol 24 (6) ◽  
pp. 853-860 ◽  
Author(s):  
C. Schmidt ◽  
A.M.S. Chowdhury ◽  
K. Neuking ◽  
G. Eggeler

Thermomechanical cycles including programming, cooling, unloading, and heating to trigger the 1WE were examined for a shape memory polymer, Tecoflex® (TFX EG − 72D). Cycles were performed at 60°C with 300% strain and a recovery time of 10 min. Strains evolving with time were estimated during the thermomechanical treatments for the total 50 cycles using 300% strain. Recovery ratios for the 300% strain were also estimated. It turns out that programming, cooling, unloading and heating to trigger the 1WE causes an increase of irreversible strain and is associated with a corresponding decrease of the intensity of the 1WE in particular during the first thermomechanical cycles.


2018 ◽  
Vol 55 (4) ◽  
pp. 494-497
Author(s):  
Giovanni Matteo Tedde ◽  
Loredana Santo ◽  
Denise Bellisario ◽  
Leandro Iorio ◽  
Fabrizio Quadrini

Shape Memory Polymer Composites (SMPCs) are a class of smart materials in which the structural properties of long-fiber polymer-matrix composites and the functional behavior of Shape Memory Polymers (SMP) are combined together. In this study, the frozen stresses resulting from fixing a deformed shape have been investigated. Two different samples were manufactured, with and without significant shape memory properties, and a three point flexural test equipment was used in order to fix a deformed shape. The forces and the resulting stresses were measured during the samples deformation and after the shape freezing. The experimental tests have shown that the shape memory sample has a better ability to fix a deformed shape, since its frozen stress is higher in all the tests.


RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19616-19622
Author(s):  
Wenbing Li ◽  
Junhao Liu ◽  
Wanting Wei ◽  
Kun Qian

Shape memory polymers can provide excellent bonding property because of their shape memory effects. This paper proposes an adhesive unit that is capable of repeatable smart adhesion and exhibits reversible adhesion under heating.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wang Zhang ◽  
Hao Wang ◽  
Hongtao Wang ◽  
John You En Chan ◽  
Hailong Liu ◽  
...  

AbstractFour-dimensional (4D) printing of shape memory polymer (SMP) imparts time responsive properties to 3D structures. Here, we explore 4D printing of a SMP in the submicron length scale, extending its applications to nanophononics. We report a new SMP photoresist based on Vero Clear achieving print features at a resolution of ~300 nm half pitch using two-photon polymerization lithography (TPL). Prints consisting of grids with size-tunable multi-colours enabled the study of shape memory effects to achieve large visual shifts through nanoscale structure deformation. As the nanostructures are flattened, the colours and printed information become invisible. Remarkably, the shape memory effect recovers the original surface morphology of the nanostructures along with its structural colour within seconds of heating above its glass transition temperature. The high-resolution printing and excellent reversibility in both microtopography and optical properties promises a platform for temperature-sensitive labels, information hiding for anti-counterfeiting, and tunable photonic devices.


2020 ◽  
Vol 11 (7) ◽  
pp. 1369-1374 ◽  
Author(s):  
Wusha Miao ◽  
Weike Zou ◽  
Yingwu Luo ◽  
Ning Zheng ◽  
Qiao Zhao ◽  
...  

Polycaprolactone based thermadapt shape memory polymers with precisely controlled structures allow tunable shape reconfigurability.


Sign in / Sign up

Export Citation Format

Share Document