A Routing Protocol for Solar Energy Harvesting Wireless Sensor Networks

2013 ◽  
Vol 734-737 ◽  
pp. 2903-2906
Author(s):  
He Pei Li ◽  
Ling Tao Zhang ◽  
Su Bo He

Energy and lifetime issues are crucial to the wide applications of wireless sensor networks. This paper proposes a routing protocol, SEHRP (Solar Energy Harvesting Routing Protocol), for solar energy harvesting wireless sensor networks. This protocol classifies all the sensor nodes into various regions for which each region has been assigned its transmission priority, and the data can only be delivered from lower priority regions to higher priority region. SEHRP can also detect the sensor nodes which are under the charging state, then avoid choosing those charging nodes to ensure the successful data delivery. Simulation results show that, compared to the baseline protocol, SEHRP can achieve significant performance improvements in terms of average energy consumption and average data delivery rate.

2017 ◽  
Vol 13 (1) ◽  
pp. 155014771668968 ◽  
Author(s):  
Sunyong Kim ◽  
Chiwoo Cho ◽  
Kyung-Joon Park ◽  
Hyuk Lim

In wireless sensor networks powered by battery-limited energy harvesting, sensor nodes that have relatively more energy can help other sensor nodes reduce their energy consumption by compressing the sensing data packets in order to consequently extend the network lifetime. In this article, we consider a data compression technique that can shorten the data packet itself to reduce the energies consumed for packet transmission and reception and to eventually increase the entire network lifetime. First, we present an energy consumption model, in which the energy consumption at each sensor node is derived. We then propose a data compression algorithm that determines the compression level at each sensor node to decrease the total energy consumption depending on the average energy level of neighboring sensor nodes while maximizing the lifetime of multihop wireless sensor networks with energy harvesting. Numerical simulations show that the proposed algorithm achieves a reduced average energy consumption while extending the entire network lifetime.


2014 ◽  
Vol 10 (7) ◽  
pp. 436107 ◽  
Author(s):  
Muhammad Mazhar Abbas ◽  
Mohamed A. Tawhid ◽  
Khalid Saleem ◽  
Zia Muhammad ◽  
Nazar Abbas Saqib ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document