Signal Integrity Analysis of High-Speed Signal Connector USB3.0

2013 ◽  
Vol 760-762 ◽  
pp. 320-324
Author(s):  
Shi Lei Zhou ◽  
Ya Lin Guan ◽  
Xin Kun Tang

High-speed signal connector has become a key factor of the signal transmission quality in telecommunications and data communications system. Signal integrity of connector is an inevitable problem. This paper based on the theory of differential transmission lines and Multimode S-Parameters, analyzed the USB3.0 connector signal integrity. And use 3D simulation software CST to build model and analyze the relationship of signal integrity and connectors geometry.

2019 ◽  
Vol 43 (4) ◽  
pp. 535-543 ◽  
Author(s):  
Shunxin Cao ◽  
Ruijun Zhang ◽  
Shuohua Zhang ◽  
Shuai Qiao ◽  
Dongsheng Cong ◽  
...  

Interaction and wear between wheel and rail become increasingly serious with the increase in elevator speed and load. Uneven roller surface, eccentricity of rollers, and the looseness of rail brackets result in serious vibration problems of high-speed and super-high-speed elevators. Therefore, the forced vibration differential equation representing elevator guide rails is established based on Bernoulli–Euler theory, and the vibration equation of the elevator guide shoes and the car is constructed using the Darren Bell principle. Then, the coupled vibration model of guide rail, guide shoes, and car can be obtained using the relationship of force and relative displacement among these components. The roller–rail parameters are introduced into the established coupled vibration model using the model equivalent method. Then, the influence of roller–rail parameters on the horizontal vibration of super-high-speed elevator cars is investigated. Roller eccentricity and the vibration acceleration of the car present a linear correlation, with the amplitude of the car vibration acceleration increasing with the eccentricity of the roller. A nonlinear relationship exists between the surface roughness of the roller and the vibration acceleration of the car. Increased continuous loosening of the guide rail results in severe vibration of the car at the loose position of the support.


2021 ◽  
Vol 19 (2) ◽  
pp. 19-27
Author(s):  
A. V. DUBOVAYA ◽  
◽  
S. Ya. IAROSHENKO ◽  
O. A. PRILUTSKAYA ◽  
◽  
...  

The article discusses the influence of stress on the development of nervous tissue, in particular, on the synthesis of neurotrophins (by the example of the brain-derived neurotrophic factor (BDNF), as the most studied class representative). The biological functions of BDNF are discussed as well as its influence on neuroplasticity and the mechanisms by which the protection of neurons is carried out. The article covers the relationship of the stress-implementing system (hypothalamic-pituitary-adrenal axis) and its main active agent (cortisol) with the BDNF synthesis system at its various levels: from the inhibition of mRNA formation to the mechanisms of postsynaptic signal transmission. Information is also provided on changes of BDNF levels due to the maternal deprivation. Epigenetic changes under the influence of glucocorticoids are also reported. However, it is not only glucocorticoids that alter the functioning of the neurotrophin system. The article provides examples of the reverse effect, enabling to consider neurotrophins as a substance with an anti-stress function. In conclusion, the authors give examples of activities that, according to research, can stimulate the synthesis of neurotrophic factor in the brain.


2022 ◽  
Vol 43 (1) ◽  
pp. 012302
Author(s):  
K. S. Zhuravlev ◽  
A. L. Chizh ◽  
K. B. Mikitchuk ◽  
A. M. Gilinsky ◽  
I. B. Chistokhin ◽  
...  

Abstract The design, manufacturing and DC and microwave characterization of high-power Schottky barrier InAlAs/InGaAs back-illuminated mesa structure photodiodes are presented. The photodiodes with 10 and 15 μm mesa diameters operate at ≥40 and 28 GHz, respectively, have the output RF power as high as 58 mW at a frequency of 20 GHz, the DC responsivity of up to 1.08 A/W depending on the absorbing layer thickness, and a photodiode dark current as low as 0.04 nA. We show that these photodiodes provide an advantage in the amplitude-to-phase conversion factor which makes them suitable for use in high-speed analog transmission lines with stringent requirements for phase noise.


2021 ◽  
Vol 16 (5) ◽  
pp. 773-780
Author(s):  
Bing-Jie Li ◽  
Zhen-Song Li ◽  
Yan-Ping Zhao ◽  
Zheng-Wang Li ◽  
Min Miao

The signal integrity (SI) analysis of a high-speed signal interconnect channel composed of through silicon vias (TSVs) and horizontal re-distribution layers (RDL) is carried out, and the problems of SI, such as transmission loss, crosstalk and coupling effect in the transmission channel, are analyzed and studied. These signal integrity issues are considered in this paper, a signal interconnect channel model is proposed and the equivalent circuit model is deduced as well. Compared with the traditional one, this interconnect channel model has better performance in SI. Further sweep frequency analysis is carried out for different material parameters to achieve signal transmission performance optimization aimed at this model. Test samples of the proposed signal interconnect channel model are designed and fabricated according to the process index, and measured to verify the actual transmission performance. The design and optimization rule of high-speed signal interconnect channel are summarized which proved that the proposed structure has more advantages in signal transmission performance, and has important guiding significance for practical design.


2004 ◽  
Vol 27 (4) ◽  
pp. 611-629 ◽  
Author(s):  
E. Matoglu ◽  
N. Pham ◽  
D.N. deAraujo ◽  
M. Cases ◽  
M. Swaminathan

2013 ◽  
Vol 300-301 ◽  
pp. 62-67
Author(s):  
Kun Ye ◽  
Ren Xian Li

Cutting is an effective device to reduce crosswind loads acting on trains. The cutting depth, width and gradient of slope are important factors for design and construction of cutting. Based on numerical analysis methods of three-dimensional viscous incompressible aerodynamics equations, aerodynamic side forces and yawing moments acting on the high-speed train, with different depths and widths of cutting,are calculated and analyzed under crosswinds,meanwhile the relationship of the gradient of cutting slope and transverse aerodynamic forces acting on trains are also studied. Simulation results show that aerodynamic side forces and yawing moments acting on the train(the first, middle and rear train)decrease with the increase of cutting depth. The relationship between transverse forces (moments) coefficients acting on the three sections and the cutting depth basically is the three cubed relation. The bigger is cutting width,the worse is running stability of train. The relationship between yawing moments coefficients acting each body of the train and the cutting width approximately is the three cubed relation. The transverse Aerodynamic forces decreased gradually with the increase of the gradient of cutting slope, the relationship between yawing moments coefficients acting each body of the train and the gradient of cutting slope basically is the four cubed relation.


2013 ◽  
Vol 662 ◽  
pp. 846-850
Author(s):  
Jiang Hong ◽  
Zhi Wei Tang ◽  
Long Hu Chen

With the increase of integrated circuit switch rate and PCB density, signal integrity has become one of the problems must be concerned in high-speed PCB design. How to fully consider EMC (Electromagnetic compatibility) and take effective measures has been a key factor of a system design. Based on the consideration of EMC, the author put forward some aspects in designing high-speed PCB. The optimized PCB design rules have steady and credible performance, the development period is shortened and the cost is reduced. The conclusions drawn from the dissertation are helpful to the design of high-speed PCB.


2003 ◽  
Vol 12 (03) ◽  
pp. 393-409
Author(s):  
Mbale Jameson ◽  
Xu Xiao Fei ◽  
Deng Sheng Chun

The relationship of Semantic Similarity of an Object as a Function of the Context (SSOFC) being the key factor in data integration is investigated. The SSOFC is a context-based system, which exploits the context of an object by utilizing the semantic similarity involved, in order to reconcile bottleneck conflicts (semantic) standing in the way of interoperability acquisition in heterogeneous systems. SSOFC is further re-enforced with the agents to equip architectural intelligence and facilitate the cooperative tasks, such as the versatility to pass, share, communicate, liaise, and negotiate the information among the architectural components in a human way. The SSOFC operates in semantic and schematic spaces that are linked with a projection facilitated by cooperative agents. In the Semantic Space, the semantic proximity (semPro) through its first component context captures the real world semantics from the local heterogeneous sources. Meanwhile, in Structural Space, the schema correspondences are paramount in order to capture structural similarities in an algebraic or mathematical formalism for reasoning and manipulation on the computer.


Sign in / Sign up

Export Citation Format

Share Document