Effects of Oxygen-Plasma Treatment Time on the Properties of UHMWPE Fiber

2013 ◽  
Vol 781-784 ◽  
pp. 2605-2608 ◽  
Author(s):  
Wen Yu Wang ◽  
Xin Jin ◽  
Bo Wang ◽  
Li Na Bian

Ultra-high-molecular-weight polyethylene (UHMWPE) fibers were treated by low temperature oxygen-plasma. The effects of oxygen-plasma treatment time on the properties of UHMWPE have been investigated. The wetting ability and roughness were increased significantly after the treatment. While, the tensile strength at break of UHMWE fibers were decreased with the treatment time. The optimum plasma treatment time is 2min.

2012 ◽  
Vol 499 ◽  
pp. 90-94 ◽  
Author(s):  
Jin Yun Xu ◽  
Wen Yu Wang ◽  
Xin Jin

To improve the adhesion between ultra-high-molecular-weight polyethylene (UHMWPE) fibers and matrix, the UHMWPE fibers were treated by low temperature argon-plasma. The effects of argon-plasma treatment on the properties of UHMWPE have been investigated. The roughness and wetting ability were all found to increase significantly after modifications. The tensile strength of UHMWE fibers were decreased with the plasma treatment time. The optimum plasma treatment is 2min.The increasing of roughness and wetting ability of UHMWPE fiber are beneficial to the improvement the adhesion between UHMWPE fiber and matrix.


1998 ◽  
Vol 18 (1-2) ◽  
pp. 49-62 ◽  
Author(s):  
Seung-Goo Lee ◽  
Tae-Jin Kang ◽  
Tae-Ho Yoon

Abstract The surface area change of UHMWPE fibers which underwent oxygen plasma treatment was measured as a function of plasma power and plasma treatment time. The interfacial adhesion of oxygen plasma treated UHMWPE fibers was evaluated via micro-droplet test and double cantilever beam test Surface area increased with plasma treatment time at 30 and 60W, but showed a maximum at 100 and 150W. The interfacial adhesion of UHMWPE fibers to vinylester resin exhibited the same trend as the surface area. SEM analysis revealed that oxygen plasma treatment roughened UHMWPE fibers by forming micro-pores leading to increased surface area. However, 1S0W plasma treatment led to degradation of the fibers and thus resulted in failure within the fiber surface layers, producing ribbon-like strips of fiber.


2020 ◽  
Vol 22 (21) ◽  
pp. 11767-11770
Author(s):  
Geun Wan Kim ◽  
Ji Won Ha

Increasing the oxygen plasma treatment time gradually broadened the LSPR linewidth of the single gold nanorods.


RSC Advances ◽  
2015 ◽  
Vol 5 (60) ◽  
pp. 48816-48821 ◽  
Author(s):  
M. Golda-Cepa ◽  
K. Engvall ◽  
A. Kotarba

The crystalline–amorphous parylene C structure was fabricated by Chemical Vapour Deposited (CVD) and functionalised in the micro- and nano-range with the oxygen plasma treatment.


2011 ◽  
Vol 1336 ◽  
Author(s):  
Amirhasan Nourbakhsh ◽  
Mirco Cantoro ◽  
Tom Vosch ◽  
Geoffrey Pourtois ◽  
Johan Hofkens ◽  
...  

ABSTRACTWe investigate the structural, optical and electrical properties of single-layer graphene exposed to oxygen plasma treatment. We find that the pristine semimetallic behavior of graphene disappears upon plasma treatment, in favour of the opening of a bandgap and the featuring of semiconducting properties. The metal-to-semiconductor transition observed appears to be dependent on the plasma treatment time. The semiconducting behavior is also confirmed by photoluminescence measurements. The opening of a bandgap in graphene is explained in terms of graphene surface functionalization with oxygen atoms, bonded as epoxy groups. Ab initio calculations of the density of states show more details about the oxygen–graphene interaction and its effects on the graphene optoelectronic properties, predicting no states near the Fermi level at increasing epoxy group density. The structural changes are also monitored by Raman spectroscopy, showing the progressive evolution of the sp2 character of pristine graphene to sp3, due to the lattice decoration with out-of-plane epoxy groups.


1995 ◽  
Vol 397 ◽  
Author(s):  
Jae-Ik Woo ◽  
Sang-Gul Lee ◽  
Dae-Gyu Moon ◽  
Chan-Hee Hong ◽  
Hoe-Sup Soh

ABSTRACTOxygen plasma treatment was performed on the excimer laser annealed poly-Si surface, followed by gate oxide deposition with low pressure chemical vapor deposition (LPCVD) in order to control the threshold voltage of excimer laser annealed poly-Si thin film transistors (TFTs).Threshold voltages of n-channel TFTs increase from 0.4 to 2.8 V by varying the treatment time from 0 to 7 min. It is shown the effective charge density increased toward negative direction with increase of the treatment time.In addition to the increase of threshold voltage, the oxygen plasma treatment on the Si surface led to an increase in the deposition rate of LPCVD oxide films with an apparent reduction of carbon around the interface between gate insulator and poly-Si film after oxygen plasma treatment.


2008 ◽  
Vol 373-374 ◽  
pp. 430-433 ◽  
Author(s):  
Ping Chen ◽  
Jing Wang ◽  
Cheng Shuang Zhang ◽  
Chun Lu ◽  
Zhen Feng Ding ◽  
...  

Armos fiber (F-12 aramid fiber in paper) was provided with broad application foreground as reinforcement material for advanced composites in aviation and spaceflight field, due to its outstanding properties, such as high modulus, high strength, high temperature resistance, erosion resistance and so on. However, the exertion of property was still limited by slippery surface, low surface energy and weak interfacial adhesion performance. In this study, the effects of oxygen plasma treatment time on polar functional groups introduced onto the fiber surface, surface free energy and surface topographic images were discussed by X-ray photoelectron spectroscopy (XPS) analysis, dynamic contact angle analysis system (DCA) and atomic force microscopy (AFM), respectively. It was found that the content of oxygen element and polar functional groups on fiber surface were all increased obviously after oxygen plasma treatment. The content of oxygen element on surface for untreated F-12 aramid fiber was 11.13%, while it increased to 15.20% after oxygen plasma treatment for 10 min; The content of polar functional groups on surface for untreated F-12 aramid fiber was 28.14%, while it increased to 38.11% after oxygen plasma treatment for 10 min. The polar component (γp) of fiber surface energy increased sharply from 6.82 mN/m to 36.68 mN/m after 10 min plasma treatment, the total surface free energy was increased from 46.26 mN/m to 64.66 mN/m.The results indicated that oxygen plasma treatment had introduced a large amount of reactive functional groups onto the fiber surface, and these groups can form together as covalent bonding to improve the surface wettability and increase the surface energy of fibers. At the same time, oxygen plasma treatment was able to generate a mass of bulges and grooves on F-12 aramid fiber surface, which had an active effect on increasing the chemical bond and mechanical function between fiber and resin and enhancing the interfacial adhesion performance of composite. The fiber surface grooves had been increased with the time prolonging before 10 min while decreased after 10 min, the results maybe relate to partial organic on fiber surface melting. It had an adverse effect on the interfacial adhesion properties of composite. Therefore, the optimum plasma treatment time was between 5 min and 10 min.


Sign in / Sign up

Export Citation Format

Share Document