High-Frequency Vibration Response of Metal Honeycomb Sandwich Structure

2009 ◽  
Vol 79-82 ◽  
pp. 1727-1730 ◽  
Author(s):  
Xiao Dong He ◽  
Xiang Hao Kong ◽  
Li Ping Shi ◽  
Ming Wei Li

ARMOR TPS panel is above the whole ARMOR TPS, and the metal honeycomb sandwich structure is the surface of the ARMOR TPS panel. So the metal honeycomb sandwich structure plays an important role in the ARMOR TPS, while it bears the flight dynamic pressure and stands against the flight dynamic calefaction. So the active environment of metal honeycomb sandwich structure is very formidable. We have to discuss any extreme situation, for reason of making sure aerial vehicle is safe. And high-frequency vibration is one of active environment. In this paper we have analyzed high-frequency vibration response of metal honeycomb sandwich structure. We processed high-frequency vibration experiment by simulating true aerial environment. Sequentially we operated high-frequency vibration experiment of metal honeycomb sandwich structure with cracks, notches and holes. Then finite-element analysis was performed by way of validating the experiment results. Haynes214 is a good high temperature alloy material of both face sheet and core at present, so we choose it in this paper.

2011 ◽  
Vol 101-102 ◽  
pp. 360-364 ◽  
Author(s):  
Xiao Jun Yang ◽  
Qing Shan Lan ◽  
Yu Ning Zhong

The theory of natural frequencies were acquired from vibration experiment, meanwhile, the first order frequencies of honeycomb sandwich structure composites were obtained by using the sandwich laminboard theory and equivalent panel theory via the finite element software ANSYS. The simulation results were compared to the experiment results to get the error of calculation of the two different equivalent methods, thereby we can select more appropriate equivalent method to ensure the veracity of the result analysis and provide a reference for the optimization design of the fiber-paper honeycomb sandwich structure composites.


2012 ◽  
Vol 567 ◽  
pp. 146-149 ◽  
Author(s):  
Xue Mei Fan ◽  
Jian Feng Wang ◽  
Cheng Jin Duan ◽  
Xiang Xin Xia ◽  
Zhao Hui Wang

In order to analyze the mechanical properties of Carbon/epoxy facings-Aluminum honeycomb sandwich structure, we simulated panels of different layers and core thickness using ABAQUS finite element analysis program. And three-point bending tests and shear tests were made on the same panels using electronic universal testing machine. In addition, we also made the same three-point bending tests on steel tubes to get a comparison with honeycomb sandwich panels. It could be seen that, the simulated results were basically identified with experimental results. The results indicated that core thickness played an important role in the panels’ bulking modulus, and number of carbon fiber layers decided the shear strength. As a whole, honeycomb sandwich structure was suitable for use in the car body with good mechanical properties under premise of lighter.


2018 ◽  
Vol 22 (8) ◽  
pp. 2544-2566 ◽  
Author(s):  
Sandesh Rathnavarma Hegde ◽  
Mehdi Hojjati

Microcracking in composite honeycomb sandwich structure and its effect on mechanical properties are studied in this paper. A methodology is presented to study the extent of mechanical strength degradation of composite sandwich structure, subjected to thermal fatigue. The material under study is used for spacecraft structural applications. The test coupons were exposed to thermal cycling at elevated temperature as high as +150°C inside the oven and cryogenic temperature of −190°C by dipping in liquid nitrogen, which is comparable to the thermal environment experienced by spacecraft structures. After each thermal cycle, coupons were inspected for microcracks under an optical microscope at the cross section. The microcracks were then quantified using parameters like crack length and crack density with increase in the number of cycles. Flatwise tensile test was conducted on the coupons after every 10 thermal cycles, up to 60 cycles, to make a correlation between crack density and mechanical strength. It was observed that by increasing the number of thermal cycles, the crack density increases and the flatwise tensile strength decreases up to a specific number of cycles. Finite element analysis was performed to predict the possible location of microcracks formation and compared with experimental observation. Good correlation was observed.


2010 ◽  
Vol 426-427 ◽  
pp. 472-476 ◽  
Author(s):  
Kan Zheng ◽  
W.H. Liao ◽  
Y.T. Qin

With the honeycomb sandwich structure widely used in aerospace, the research of its mechanical properties becomes especially important. All of the finite element analysis software have no corresponding cell library, so before the analysis, the honeycomb sandwich panels should be equivalent processed. The paper by taking the floor of a microsatellite as the research object, used the equivalent plate theory and sandwich plate theory for equivalent processing, then adopted the finite element software to analyze the mechanical properties of the floor under two alternative condition. By compared with analytical solution, the equivalent results were reasonable, and the two methods were basically identical. Meanwhile, the equivalent results provided the reliable basis for the satellite structure optimum design and mechanical test.


2010 ◽  
pp. 223-235

Abstract The honeycomb sandwich structure composite is a very efficient and complex structure widely used in the aircraft industry. Honeycomb-cored sandwich panels increase part stiffness at a lower weight than monolithic composite materials. This chapter describes the analysis of the intermingling of the film adhesive/prepreg resin system. It discusses the causes and effects of honeycomb core movement, which results in core crush. The chapter also explains the formation of a void in honeycomb composites and the failure mechanisms in honeycomb sandwich structure composites.


Sign in / Sign up

Export Citation Format

Share Document