Influences of Pretreatment Solution Concentrations on Copper-Doped SiC Particles Made through Electroless Plating Technique

2009 ◽  
Vol 79-82 ◽  
pp. 1739-1742
Author(s):  
Ming Hu ◽  
Yun Feng Su ◽  
Ming Zhong Wu

. Pretreatments for copper-doped SiC particles made by an electroless-plating technique, the preconditions to attain good coatings, were conducted in order to obtain the active and clean surface of SiC particles. An orthogonal experiment method was used to determine the concentration of every pretreatment solution. The morphologies of the coatings were observed in a scanning electronic microscope(SEM), the composition of the coatings was analyzed by an energy-dispersive X-ray analysis (EDS), and the phases in the coatings were identified by a X-ray differtometer (XRD). The influences of pretreatment solution concentrations on the copper coatings quality of SiC particles were dealt with. The results showed that the pretreatment solution concentrations had great influences on the coatings quality of SiC particles. The obvious effects on the copper coatings derived from the coarsening solution concentration. The optimized copper coatings of SiC particles were uniform and dense, no bare SiC particles were seen and the interfaces between SiC and Cu bonded well. The high quality and low cost coatings were also obtained after the expensive PaCl2 activating agent had been substituted for AgNO3.

2020 ◽  
Vol 26 (2) ◽  
pp. 33-40
Author(s):  
Abdul Kuddus ◽  
SM Mahabubuzzaman ◽  
Abu Bakar Md Ismail

Investigation on the quality of the extracted Silicon (Si) from the sand of the Padma river of Bangladesh using the Magnesio-Aluminothermic process has been presented in this work. Magnesio-Aluminothermic process, which is low-energy, low-cost and CO2 free compared to conventional carbothermic process, was used for the extraction of Si from the sand. By performing the thermite process, Si was extracted as a eutectic mixture of Aluminium and Si, following that, several cycles of acid leaching were used to obtain highly pure polycrystalline silicon. After grinding the cleaned sand and making a homogeneous mixture with associated chemicals and ignition materials, modified Aluminothermic reaction was performed to produce a eutectic mixture of Si and Al. Grinded eutectic mixture of Si and Al was then purified with acid leaching and finally above 97% pure crystalline Si was extracted. XRD (X-ray diffraction) and Raman Spectroscopy confirmed the polycrystalline nature of Si where XRF (X-ray fluorescence) and EDX (Energy Dispersive X-ray Spectroscopy) corroborated the high purity of extracted Si describing the chemical composition. Bangladesh Journal of Physics, 26(2), 33-40, December 2019


1983 ◽  
Vol 27 ◽  
pp. 491-496
Author(s):  
Gerald D. Bowling ◽  
Iris B. Ailin-Pyzik ◽  
David R. Jones

This study compares the quality of the fused samples obtained by three separate methods. The first set of samples was prepared by the method used at USGS in Denver and reported by Taggart and Whalberg (1). The second set was fused by our manual method and cast in graphite molds. The third set was fused in the Herzog HAG-12 automated fusion device.The manual fusion technique requires the use of a muffle furnace capable of 1100°C (2100°F) and graphite molds. No release agents such as KBr and LiBr are required since the disks release easily from the graphite. The 25mm diameter center of the “fire-polished” upper surface of the disk is used for analysis without further surface preparation. This method has been shown to be suitable for preparation of a wide variety of glasses and raw materials including burned dolomite, silicates* high zircon materials such as BCS-388, calcined alumina and alumina refractories.


2011 ◽  
Vol 189-193 ◽  
pp. 217-221
Author(s):  
Zheng Liu ◽  
Jing Di Zhang ◽  
Ying Zhi Zhou

Electroless plating of Ni-Fe-B alloy on poly(ethylene terephthalate) (PET) fabrics with a novel activiting method was investigated. The activiting steps were immersion the samples to a methanol solution (10 mL) containing 2 g nickel acetate for 30 min, then immersed in an other methanol solution (10 mL) containing 1g potassium borohydride to adequate reaction. Low-cost activator was gained by potassium borohydride reduce nickel acetate on the PET fabric surface. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were used to characterize morphology, structure, composition of the activated layer and Ni-Fe-B coating on the PET fabric. The results indicate that Ni-Fe-B alloy deposits by the electroless deposition were continuous and uniform.


2017 ◽  
Vol 50 (6) ◽  
pp. 1716-1724 ◽  
Author(s):  
Mohd. Shkir ◽  
V. Ganesh ◽  
S. AlFaify ◽  
K. K. Maurya ◽  
N. Vijayan

In this work, the growth of large size (∼25 × 29 × 5 mm and ∼25 × 24 × 6 mm) colorful single crystals of zinc (tris) thiourea sulfate (ZTS) in the presence of 0.05–2 wt% phenol red (PR) dye was achieved using a simple and low-cost technique. Powder X-ray diffraction patterns confirm the presence of PR dye, which is indicated by an enhancement of the Raman peak intensities, a shift in their position and the appearance of a few extra peaks. The quality of the grown crystals was assessed by high-resolution X-ray diffraction, which shows that the crystalline perfection of 1 wt% PR-dyed ZTS crystals is better than that of 2 wt% PR-dyed crystals. The measured UV–vis absorbance spectra show two additional, strong absorption bands at ∼430 and 558 nm in the dyed crystals, due to the presence of PR dye, along with a band at ∼276 nm which is present for all crystals but is slightly shifted for the dyed crystals. Photoluminescence spectra were recorded at two excitation wavelengths (λexc= 310 and 385 nm). The luminescence intensity is found to be enriched in dyed crystals, with some extra emission bands. An enhancement in the value of the dielectric constant and a.c. electrical conductivity was also observed in the dyed ZTS crystals.


Author(s):  
Saturi Baco ◽  
Lisnawaty Bambang ◽  
Norlaila Joseph ◽  
Fouziah MD.Yassin ◽  
Nur Fadzilah Basri

Hydroxyapatite (HA) is one of the most attractive biomaterials and widely used as a bone substitute due to its compositions are similar to the minerals in teeth and bones. Understanding of natural HA properties are useful in order to produces high quality of HA. In this paper, we report an easy and low cost method to extract the natural HA from femur cow bone and subsequently sintered at different temperature from 900 oC to 1300 oC. Structural, composition and surface morphology of natural Hydroxyapatite (HA) at different sintering temperatures (900 ̊ C, 1000 ̊ C, 1100 ̊ C, 1200°C and 1300 ̊ C) were discussed. The HA structural, composition and surface morphology were studied by using X-Ray Diffractometer (XRD), Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM), respectively. The results show the main HA phases were detected in the range of 31.72o - 31.82o (2Ө) for all sintered HA corresponding to 211 plane. The crystallite size of HA increases with sintering temperature from 900 ̊C to 1100 ̊C. Spectrums of FTIR revealed the existences of functional groups of carbonate (CO3 2-), phosphate (PO4 3-) and hydroxyl (OH-) peaks. SEM micrographs presented small and homogenous grains from 900°C to 1100°C. The grains look interconnected as sintering temperature increased at 1200°C and 1300°C. From this study, sintering process was found to be an easy and low cost method to produce natural HA from femur cow bones.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Worku Wubet Andualem ◽  
Fedlu Kedir Sabir ◽  
Endale Tsegaye Mohammed ◽  
Hadgu Hailekiros Belay ◽  
Bedasa Abdisa Gonfa

Development of green technology is generating interest of researchers towards ecofriendly and low-cost methods for biosynthesis of nanoparticles (NPs). In this study, copper oxide (CuO) NPs were synthesized using a copper nitrate trihydrate precursor and Catha edulis leaves extract as a reducing and capping agent during the synthesis. The biosynthesized CuO NPs were characterized using an X-ray diffractometer (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscope (TEM), Ultraviolet visible spectroscopy (UV-Vis), and Fourier transform infrared (FTIR) spectroscopy. XRD characterization confirmed that the biosynthesized CuO NPs possessed a good crystalline nature which perfectly matched the monoclinic structure of bulk CuO. Furthermore, the results obtained from SEM and TEM showed that the biosynthesized CuO NPs were spherical in shape. EDS characterization of the biosynthesized NPs also indicated that the reaction product was composed of highly pure CuO NPs. Moreover, the antimicrobial activities of different concentrations of CuO NPs synthesized using Catha edulis extract were also tested. Accordingly, the result showed that the highest zone of inhibitions measured were for CuO NPs synthesized using 1 : 2 ratios at 40 mg/ml solution concentration and observed to be 22 ± 0.01 mm, 24 ± 0.02 mm, 32 ± 0.02 mm, and 29 ± 0.03 mm for S. aureus, S. pyogenes, E. coli, and K. pneumonia, respectively.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


2013 ◽  
Vol 20 (3) ◽  
pp. 91-106 ◽  
Author(s):  
Rachel Pizarek ◽  
Valeriy Shafiro ◽  
Patricia McCarthy

Computerized auditory training (CAT) is a convenient, low-cost approach to improving communication of individuals with hearing loss or other communicative disorders. A number of CAT programs are being marketed to patients and audiologists. The present literature review is an examination of evidence for the effectiveness of CAT in improving speech perception in adults with hearing impairments. Six current CAT programs, used in 9 published studies, were reviewed. In all 9 studies, some benefit of CAT for speech perception was demonstrated. Although these results are encouraging, the overall quality of available evidence remains low, and many programs currently on the market have not yet been evaluated. Thus, caution is needed when selecting CAT programs for specific patients. It is hoped that future researchers will (a) examine a greater number of CAT programs using more rigorous experimental designs, (b) determine which program features and training regimens are most effective, and (c) indicate which patients may benefit from CAT the most.


2020 ◽  
Vol 86 (10) ◽  
pp. 18-22
Author(s):  
K. N. Vdovin ◽  
K. G. Pivovarova ◽  
N. A. Feoktistov ◽  
T. B. Ponamareva

Zinc sulfate is the main component in the composition of the acidic zinc plating electrolyte. Deviation in the electrolyte composition from the optimum content leads to destabilization of the electrolysis process and deteriorate the quality of the resulting zinc coating. The proper quality of a zinc coating obtained by galvanic deposition can be ensured only with timely monitoring and adjustment of the electrolyte composition. A technique of X-ray fluorescence determination of zinc (in terms of zinc sulfate) in an acidic zinc plating electrolyte is proposed. The study was carried out using an ARL Quant’X energy dispersive spectrometer (Thermo Fisher Scientific, USA) with a semiconductor silicon-lithium detector. The features of the spectrometer design are presented. The optimal parameters of excitation and detection of zinc radiation were specified when the electrolyte sample was diluted 1:1000. The ZnKα1 line was used as an analytical line. The plotted calibration graph is linear, the correlation coefficient being 0.999234. The results of zinc determination according to the developed method were compared with the data of the reference method of complexometric titration to prove the reliability of the procedure. The results are characterized by good convergence and accuracy. The proposed method of X-ray fluorescence zinc determination in a zinc plating electrolyte equals complexometric titration in the limiting capabilities and even exceeds the latter in terms of the simplicity of sample preparation and rapidity. The developed method of X-ray fluorescence determination of zinc is implemented in analysis of the electrolyte used in the continuous galvanizing unit at «METSERVIS LLC».


Author(s):  
Katherine V. Whittington

Abstract The electronics supply chain is being increasingly infiltrated by non-authentic, counterfeit electronic parts, whose use poses a great risk to the integrity and quality of critical hardware. There is a wide range of counterfeit parts such as leads and body molds. The failure analyst has many tools that can be used to investigate counterfeit parts. The key is to follow an investigative path that makes sense for each scenario. External visual inspection is called for whenever the source of supply is questionable. Other methods include use of solvents, 3D measurement, X-ray fluorescence, C-mode scanning acoustic microscopy, thermal cycle testing, burn-in technique, and electrical testing. Awareness, vigilance, and effective investigations are the best defense against the threat of counterfeit parts.


Sign in / Sign up

Export Citation Format

Share Document