Rheological Properties and Anti-Aging Properties of PP/PP-g-AN Blends

2013 ◽  
Vol 815 ◽  
pp. 579-583 ◽  
Author(s):  
Ya Zhen Wang ◽  
Cheng E Yue ◽  
Di Ma ◽  
Wei Nan Jia ◽  
Yong Li

The effect of PP-g-AN prepared by solid phase grafting on the blends of PP/PP-g-AN was investigated in this paper. The influence of aging testing time, PP-g-AN additives concentration, shear rate on the rheological properties and anti-aging properties of PP/PP-g-AN were mainly discussed. The results show that PP/PP-g-AN blends are pseudoplastic fluid and the presence of PP-g-AN can restrain the degradation of polypropylene when the content of PP-g-AN is in a certain range.

1999 ◽  
Vol 13 (14n16) ◽  
pp. 1893-1900
Author(s):  
Fan Zhikang ◽  
Liang Shuhua ◽  
Xue Xu ◽  
Wang Gang

The rheological properties of an electrorheological(ER) fluid have been studied in a modified concentric cylinder viscometer. The results show that the relation of shear rate and shear stress is non-linear at certain shear rate defined as an original transition zone. Regressive analysis reveals that the ER fluid is of yield-pseudoplastic fluid in the transition zone. With increase in applied fields, the rheological properties of the ER fluid deviates from Newtonian fluid and the length of the transition zone becomes longer.


2015 ◽  
Vol 71 (11) ◽  
pp. 1686-1693 ◽  
Author(s):  
Yingchao Cheng ◽  
Huan Li

Sludge rheological properties play a fundamental role in determining its performance in pipes, tanks or reactors. However, the relative information on high-solids sludge is very rare. In this study, the rheological properties of high-solids sludge were investigated systematically and a new rheological model was built. The results showed that the low-solids sludge with total solids content (TS) 2–15% was pseudoplastic fluid, and the high-solids sludge with TS 7–15% exhibited thixotropic property. Sludge viscosity increased exponentially with the increasing TS, and decreased in function of power along with the increasing shear rate. The new complex model combining the exponential model and the power model can perfectly describe the relation between TS, shear rate and viscosity of the high-solids sludge. Both sludge organic content and temperature have influence on sludge viscosity, but the influence was not significant for the low-solids sludge. For the high-solids sludge with TS 6%, 8%, 10% and 12%, their viscosities increased by 5.0, 9.1, 25.7 and 24.9 times, respectively, when sludge organic content increased from 28% to 53%, and decreased by 36.5%, 49.5%, 54.0% and 65.4%, respectively, when sludge temperature rose from 9 to 55 °C.


2018 ◽  
Vol 61 (3) ◽  
pp. 1113-1120
Author(s):  
Ibrahim Denka Kariyama ◽  
Xiaodong Zhai ◽  
Binxin Wu

Abstract. This literature review was conducted on the physical and rheological properties of animal manure slurries and their applications. The review revealed the importance of these properties in the design of anaerobic treatment plants, pipe systems to transport slurries to treatment and storage units, and other applications and management of raw and treated slurries. The selection of pumping and mixing equipment and their power requirements, the flow behavior, mass, and heat transfer, the quality of mixing, pressure head loss, and other applications of manure slurries are affected by the physical and rheological properties. The review shows that manure slurries generally exhibit non-Newtonian pseudoplastic fluid behavior with a decreasing apparent viscosity as the shear rate increases and that the power law equation can successfully be used to describe the relationship between shear stress and shear rate, especially for low total solids concentrations. Keywords: Animal manure slurries, Apparent viscosity, Non-Newtonian pseudoplastic fluids, Power law equation, Rheological properties.


Author(s):  
Jumardi Roslan ◽  
Hay Chye Ling ◽  
Mohd Dona Sintang ◽  
Suryani Saallah

Bambangan (Mangifera pajang Kosterm) is an indigenous fruit that can be found in Borneo Island including Sabah and Sarawak (Malaysia), Kalimantan (Indonesia), and Brunei. Besides being freshly eaten, the pulp of bambangan fruit can be processed for juice production to expand its market potential. During the processing of fruit juice, the application of heat treatment such as pasteurization and sterilization might influence their rheological behavior. Thus, the present study aims to investigate the effect of heat treatment on the rheological properties of bambangan fruit juice (BFJ). The freshly squeezed BFJ was subjected to different heat treatment conditions; sterilization (121°C, 3 minutes), mild temperature long time (MTLT) pasteurization (65°C, 15 minutes), and high temperature short time (HTST) pasteurization (90°C, 1 minute). Rheological analysis of the heat-treated BFJ was performed using a rheometer at a shear rate ranging from 1 to 250 s-1 and a temperature between 5 °C to 70 °C. Pasteurization at 90 °C for 1 minute (HTST) was found to be the most suitable heat treatment for the BFJ. At this condition, the BFJ exhibited a non-Newtonian pseudoplastic fluid behavior (n < 1), fitted well with the Herschel-Bulkey model. The value of parameters obtained from Herschel-Bulkley equation for HTST treatment of bambangan juice were n= 0.83, k= 0.32 and yield stress= 3.96. The viscosity values of HTST bambangan juice at the temperature of 5, 20, 40 and 70 °C were 3.53, 2.33, 1.53 and 1.76 Pa.s respectively. This rheological information is of fundamental importance in optimizing equipment design, process control, and sensory evaluation.


2007 ◽  
Vol 35 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Takatsune Narumi ◽  
Hiroyoshi Maeda ◽  
Hiroyuki Yoshizawa ◽  
Tomiichi Hasegawa

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (2) ◽  
pp. 127-135
Author(s):  
Rafał Kozdrach ◽  

The article presents the results of research on the influence the type of base oil in lubricating compositions has on the rheological parameters of selected lubricants. Vegetable, mineral, and synthetic dispersion phases were used to produce lubricating greases. The modified amorphous silica was used as the dispersed phase. However, as a modifying additive was used a substance containing the antioxidants, corrosion inhibitors, and EP/AW additives. The experiments on rheological properties were carried out using a Physica MCR 101 rotational rheometer (manufactured by Anton Paar), equipped with a diffusion air bearing and connected to a pneumatic supply – an oil-free Jun-Air compressor and air drying block. The device is equipped with a Peltier system for temperature control in the range of –20°C to 200°C and an external thermostatic VISCOTHERM V2 system, working in the temperature range of –20°C to 200°C. The rheometer control and measurement data analysis were performed using Rheoplus software. The tests were carried out using a cone-plate measuring system with a shear rate range of 0.01–100 s-1 at 20°C for lubricating compositions prepared on various oil bases. To evaluate the value of rheological parameters, the results of tests of the dependence between shear stress and shear rate (flow curves) were used. For the theoretical determined on the flow curves, the following rheological models were used: Bingham, Herschel–Bulkley, Casson, and Tscheuschner. The values of the shear stress (yield point) in depending on the type of dispersion phase has changed. This proves that the use of a base oil with the appropriate functional properties does not weaken, but reinforces the spatial structure of a lubricating grease. It has an important meaning when selecting construction parameters when designing a central lubrication system with grease made from a vegetable oil base (Abyssinian oil). The rheological properties of the lubricating grease are influenced by the type of base oil and thickener, any additives in the grease, the production technology of the grease, and the conditions in which it is used. The tests revealed an important influence of the base oil on the rheological parameters that describe the behaviour of lubricating compositions subjected to stresses and strains in a lubricating system.


2013 ◽  
Vol 19 (No. 4) ◽  
pp. 148-153 ◽  
Author(s):  
P. Novotná ◽  
A. Landfeld ◽  
K. Kýhos ◽  
M. Houška ◽  
J. Strohalm

Fruit pulps contain fine particles of the flesh of the original fruit that are suspended in the fruit juice. This suspension has a tendency to settling or separation during measurements of its rheological properties in the rotational rheometer with coaxial cylinders (especially if the greater gap is used). In this case the use of a mixer is convenient. The mixer can serve as a tool for measurement of rheological properties and at the same time it can prevent the settling and it is not sensitive to the occurrence of greater particles in the measured fluid. The helical ribbon mixer was used in this work for measurement of five samples of fruit pulp. The mixer was calibrated by the use of Newtonian fluid of known viscosity (honey). The radius of the inner cylinder of hypothetical rotational rheometer was predicted from the assumption that mixer and cylinder exhibit the same torque necessary for the rotation at the same rotational speed. The average shear rate in the mixed pulp was predicted by using the relation valid for power law fluids and rheometer with coaxial cylinders. The radius (where the average shear rate was calculated) was chosen by the requirement that the shear rate would be almost independent of changes in the flow behaviour index valid for measured pulps. Firstly the flow behaviour index was predicted as a slope of torque vs. rotational speed dependence in log-log co-ordinates. It was found that the flow behaviour index varies in the range 0.2&ndash;0.3. The radius was predicted from a graph where shear rates for 0.2 and 0.3 are the same. Then the average shear rates were calculated from rotational speeds for individual flow behaviour indexes. Rheological properties measured by using a mixer correspond to those measured with a rotational rheometer with coaxial cylinders satisfactorily only in the case that the creeping flow regime was kept in the mixed fluid. The fruit pulps are strongly non-Newtonian fluids with very low values of the flow behaviour index around 0.2.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
L. N. Carenza ◽  
G. Gonnella ◽  
A. Lamura ◽  
D. Marenduzzo ◽  
G. Negro ◽  
...  

Abstract We use computer simulations to study the morphology and rheological properties of a bidimensional emulsion resulting from a mixture of a passive isotropic fluid and an active contractile polar gel, in the presence of a surfactant that favours the emulsification of the two phases. By varying the intensity of the contractile activity and of an externally imposed shear flow, we find three possible morphologies. For low shear rates, a simple lamellar state is obtained. For intermediate activity and shear rate, an asymmetric state emerges, which is characterized by shear and concentration banding at the polar/isotropic interface. A further increment in the active forcing leads to the self-assembly of a soft channel where an isotropic fluid flows between two layers of active material. We characterize the stability of this state by performing a dynamical test varying the intensity of the active forcing and shear rate. Finally, we address the rheological properties of the system by measuring the effective shear viscosity, finding that this increases as active forcing is increased—so that the fluid thickens with activity.


2019 ◽  
Vol 33 (05) ◽  
pp. 1950014 ◽  
Author(s):  
A. Bindu Madhavi ◽  
S. Sreehari Sastry

Rheological properties of Cholesteryl n-valerate, Cholesteryl decanoate and Cholesteryl myristate which are esters of cholesterol have been studied. Phase transition temperatures and rheological parameters such as viscosity, elastic modulus G[Formula: see text], loss modulus G[Formula: see text] as functions of temperature, shear rate and time are investigated. In frequency sweep test, a higher transition crossover region has occurred for Cholesteryl myristate, whereas for Cholesteryl n-valerate a frequency-independent plateau prevailed for both the moduli. The occurrence of blue phase in Cholesteryl decanoate during temperature sweep measurements is an indication for the rheological support. The results for steady state have informed that cholesteric esters are having non-Newtonian flow behavior in their respective cholesteric phases. The power-law model has explained well the shear rate dependence of shear stress. A few practical applications of these esters as lubricant additives are discussed, too.


Sign in / Sign up

Export Citation Format

Share Document