Finite Element Analysis of Rolling Process for Pilger Mill

2014 ◽  
Vol 881-883 ◽  
pp. 1420-1423 ◽  
Author(s):  
Ning An ◽  
Liu Hai

For the simulation of cold rolled 20Cr steel pipe rolling process the DEFORM-3D being used, the simulation results include the equivalent stress, equivalent strain and rolling force distribution in deformation zone. The stress state of the pipe reducer section is analyzed, analysis shows that the simulation result is approximate the theoretical calculation. The simulation result shows the roll pass and openning effect on the rolling pipe. A view put forward is to compare the simulation results with the actual production and find out their differences. A proposal is made to establish a corresponding database based on simulation and production data.

2012 ◽  
Vol 472-475 ◽  
pp. 692-695
Author(s):  
Jian Hua Wang ◽  
Fu Xiao Chen

By analyzing the characteristics and forming technology of hypoid driving gear, it was suitable for adopting fully enclosed die forging principle to form the gear. Based on different forging methods, three kinds of blank shape and corresponding forming schemes were designed. The three dimensional models of blank and die were created by the UG software. The three forming schemes were simulated by the Deform-3D software. The simulation results of distribution of equivalent stress, distribution of equivalent strain and load-stroke curve were comparatively analyzed. Then the most reasonable scheme was chosen. At last, the rationality of numerical simulation can be further verified by the optimized scheme was proved by experiment.


2011 ◽  
Vol 340 ◽  
pp. 64-69
Author(s):  
Bo Jian Wang ◽  
Wu Peng Zhang ◽  
Yong Jie Wang

Based on the deformation features in the rolling process of shaped wires, this paper focuses on the metal flow rules and distribution characteristics of stress and strain through simulating the shaping process by DEFORM-3D. The equivalent stress and equivalent strain is in the same distribution: smallest on the base and gradually increasing along the broadening direction and highest on the tooth. A satisfactory concordance between the scattering of the hardness values measured over the wire sections and that of the equivalent strain is found, thus verifying the accuracy and the reasonableness of the simulation process.


2013 ◽  
Vol 690-693 ◽  
pp. 2982-2989
Author(s):  
Zhi Wei Huang ◽  
Yuan Yuan Wan ◽  
Yan Bin Wang ◽  
Lu Chang Che ◽  
Chuan Lin Liu ◽  
...  

In this paper, an electromagnetic shell part was studied with the design of die, simulation and the flow control forming (FCF) method. The important technology of FCF was the design of cavity die to control metal flow. The simulation results indicate that pyramidal faces of cavity die exerted a significant influence on qualities of parts. The simulation results also revealed that the effective stresses of the sheet were inhomogeneous and the distributions of the equivalent stress were lamellar with obvious gradients. Experimental results show that steel sheet (08Al) could be formed in one step into intricate shapes at room temperature. This confirmed that FCF is a safe, clean and practical method for the near net forming of parts.


2011 ◽  
Vol 101-102 ◽  
pp. 534-537
Author(s):  
Bao Shou Sun ◽  
Liang Tao Qi ◽  
Xue Dao Shu

In this paper, the simulation model of the cold rolling process of the deep groove bearing inner ring was established by using the finite element software Deform-3D. The numerical calculation of the model was made with different process parameters. The law of the influence the process parameters on the rolling force was analyzed. The deformation mechanism of the cold rolling process of the inner ring was revealed. The research indicated that the feed rate of idle roller had the greatest influence on the cold rolling process. Finally the experiment using the XS-50 precision CN ring rolling machine was carried on and a finished product of the inner ring of a better quality came out. It verified that the numerical simulation could provide theoretical basis for the practical production process.


2014 ◽  
Vol 989-994 ◽  
pp. 425-428
Author(s):  
Jin Hong Ma ◽  
Bin Tao ◽  
Xiao Han Yao

Applying the research result of the whole corrugated web H-beam to rail structure, a new kind of rail structure, the corrugated web rail was generated. The special structure rail was successfully rolled in the Research Mill Institute of Yanshan University. Based on the finite element analysis software DEFORM-3D, the rolling process of corrugated waist rail is simulated. The miscrostructure evolution of rolling corrugated waist rail is analysed. The relationship between miscrostructure evolution and deformation are also analysed.


2010 ◽  
Vol 450 ◽  
pp. 87-90
Author(s):  
Qin Qin ◽  
Di Ping Wu ◽  
Jing Jing Li ◽  
Yong Zang

Due to the complexity of H-beam’s cross section, it is difficult to calculate the rolling force and force torque accurately using classic formulas conveniently when H-beams of new size are developed. This paper describes an investigation into the reversing process of H-beam using MARC software and compares the results with rolling data from the production line. A FEM model involving in three-dimensional, elastic-plastic and thermo-mechanical coupling has been established successfully to predict multi-pass rolling process. The analysis produces outputs such as deformation rules, rolling force and the web thickening. The influence of rolling reduction, the reduction rate between the web and flange are also discussed. The indications are that there is much difference between the measurement of rolling force and the rolling force calculated by using classic formulas. The reason is that real reduction during rolling process is much more than the scheduled one. A new revised method was suggested to calculate the rolling force. The simulation results show that this new method for calculating rolling force is feasible.


2011 ◽  
Vol 474-476 ◽  
pp. 325-329 ◽  
Author(s):  
Jie Jin ◽  
Gang Huang

Establishment of numerical model for hot rolled bar and analysis the changes from the discrete points on surface during the hot bar rolling process (includes velocity, displacement, equivalent stress, equivalent strain). And the position of surface defects can be effectively predicted form this. Compared with the actual hot rolling bar production, numerical simulation was in good agreement with it. So that the numerical simulation analysis has practical significance for optimizing processing parameters and process design to ensure product quality.


2014 ◽  
Vol 898 ◽  
pp. 221-224
Author(s):  
Jin Hong Ma ◽  
Bin Tao ◽  
Xiao Han Yao

Complex shape of H-beam section and uneven elimination of heat on the section result in too big temperature difference between web and flange. At the same time,as the roller cooling water forms tank on H-beam web, the section temperature difference further increases. Based on finite element analysis software DEFORM-3D, the FEM model of finished product size of H194×150×6×9 is established. Thermo-mechanical coupled method is adopted to simulate the rolling process of H-beam. The cooling water influence on section temperature distribution, equivalent stress and strain distribution is analyzed. The section temperature change characteristic are studied to provide reference for further research.


2014 ◽  
Vol 1061-1062 ◽  
pp. 515-521 ◽  
Author(s):  
Abdulrahman Aljabri ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei

Cold rolled thin strip has received a great deal of attention through technological and theoretical progress in the rolling process, as well as from researchers who have focused on some essential parameters of strip such as its shape and profile. This paper describes the development of a 3-D finite element model of the shape of thin strip during cold rolling to simulate the cold rolling of WCS (work roll crossing and shifting) in asymmetric rolling. This finite element model considers the asymmetrical rolling parameters such as variations in the diameters of the rolls and the crossing angle as the work roll shifts on the strip during cold rolling. The shape and profile of the strip are discussed in the asymmetrical and symmetrical rolling conditions, while the total rolling force and distribution of stress are discussed in the case where the roll cross angle and axial shifting roll changes. The results can then be used to control the shape and profile of thin strip during rolling.


2021 ◽  
Vol 887 ◽  
pp. 564-574
Author(s):  
Oleksandr H. Kurpe ◽  
Volodymyr V. Kukhar ◽  
Eduard S. Klimov

In the paper the research has been performed to obtain the stress distribution through the thickness of the rolled products along the deformation zone in the conditions of roughing rolling and in the conditions of quasi-stationary temperature distribution during finishing rolling at the Steckel mill. The research has been performed by the simulation based on the Abaqus CAE 6.14-2 software and analytical modeling of the hot rolling process of coils at the Steckel mill with dimensions of 15 mm × 1500 mm, made of steel grade S355JR+AR, according to the requirements of EN 10025-2. The obtained deviations of the rolling force between simulation, analytical modeling and actual data have comparable results and a similar trend of changes through the passes, the average value of which does not exceed 1.54 % and - 1.77 %. The beginning of the continuous layer formation of equivalent stress during roughing rolling has been determined, and, accordingly, the beginning of the deformation penetration through the entire thickness of the semi-rolled product has been also determined that occurs in the pass 6 when reduction equals 14 %.


Sign in / Sign up

Export Citation Format

Share Document