Characterizing the Influence of Drying on Ink Absorption Using Reconstructed Images by Laser Scanning Confocal Microscopy
The objective of this experiment was to investigate the relationship between drying and ink absorption using laser scanning confocal microscopy (LSCM). Fluorescent ink was used to observe and characterize ink penetration and distribution by LSCM. Three-dimensional images of ink penetration were obtained by reconstructing all XY plane images. Reconstructed images were used to describe ink absorption in coated paper by LSCM. The results implied that it was reliable and effective using LSCM to characterize the ink penetration depth and distribution uniformity. This method could not damage the specimen and did not need fluorescent dye to stain the specimen, which decreased the errors by hand operation. The results indicated that drying temperature affected ink penetration depth and distribution evenness. Higher and lower drying temperature could not contribute to ink absorption uniformity. With the drying temperature increasing, ink penetration depth in coated paper increased.