Vehicles Categorization in Complex Background

2014 ◽  
Vol 998-999 ◽  
pp. 708-711
Author(s):  
Ying Zhuo Xiang ◽  
Dong Mei Yang ◽  
Ji Kun Yan

This paper presents a novel approach to categorize multi-view vehicles in complex background using only two dimension characteristic vectors instead of high dimension vectors. Vehicles have large variability of models and the view-point makes the appearance change dramatically. Significant characteristics should be chosen as the evidence to categorize. In this paper, we categorize the vehicles into two categories – cars and lorries. Line detection method is used and calculating the average line length and the number of parallel lines as the two characteristics. A linear classifier is trained using 30 different view cars and lorries as the training set and an 10 additional different cars and lorries as the testing set.

2010 ◽  
Vol 130 (11) ◽  
pp. 2039-2046
Author(s):  
Munetoshi Numada ◽  
Masaru Shimizu ◽  
Takuma Funahashi ◽  
Hiroyasu Koshimizu

Author(s):  
Zhenhua Li ◽  
Weihui Jiang ◽  
Li Qiu ◽  
Zhenxing Li ◽  
Yanchun Xu

Background: Winding deformation is one of the most common faults in power transformers, which seriously threatens the safe operation of transformers. In order to discover the hidden trouble of transformer in time, it is of great significance to actively carry out the research of transformer winding deformation detection technology. Methods: In this paper, several methods of winding deformation detection with on-line detection prospects are summarized. The principles and characteristics of each method are analyzed, and the advantages and disadvantages of each method as well as the future research directions are expounded. Finally, aiming at the existing problems, the development direction of detection method for winding deformation in the future is prospected. Results: The on-line frequency response analysis method is still immature, and the vibration detection method is still in the theoretical research stage. Conclusion: The ΔV − I1 locus method provides a new direction for on-line detection of transformer winding deformation faults, which has certain application prospects and practical engineering value.


Author(s):  
Paweł Kowalski ◽  
Piotr Tojza

The article proposes an efficient line detection method using a 2D convolution filter. The proposed method was compared with the Hough transform, the most popular method of straight lines detection. The developed method is suitable for local detection of straight lines with a slope from -45˚ to 45˚.  Also, it can be used for curve detection which shape is approximated with the short straight sections. The new method is characterized by a constant computational cost regardless of the number of set pixels. The convolution is performed using the logical conjunction and sum operations. Moreover, design of the developed filter and the method of filtration allows for parallelization. Due to constant computation cost, the new method is suitable for implementation in the hardware structure of real-time image processing systems.


2021 ◽  
Author(s):  
Jiaqi Li ◽  
Lei Wei ◽  
Xianglin Zhang ◽  
Wei Zhang ◽  
Haochen Wang ◽  
...  

ABSTRACTDetecting cancer signals in cell-free DNA (cfDNA) high-throughput sequencing data is emerging as a novel non-invasive cancer detection method. Due to the high cost of sequencing, it is crucial to make robust and precise prediction with low-depth cfDNA sequencing data. Here we propose a novel approach named DISMIR, which can provide ultrasensitive and robust cancer detection by integrating DNA sequence and methylation information in plasma cfDNA whole genome bisulfite sequencing (WGBS) data. DISMIR introduces a new feature termed as “switching region” to define cancer-specific differentially methylated regions, which can enrich the cancer-related signal at read-resolution. DISMIR applies a deep learning model to predict the source of every single read based on its DNA sequence and methylation state, and then predicts the risk that the plasma donor is suffering from cancer. DISMIR exhibited high accuracy and robustness on hepatocellular carcinoma detection by plasma cfDNA WGBS data even at ultra-low sequencing depths. Analysis showed that DISMIR tends to be insensitive to alterations of single CpG sites’ methylation states, which suggests DISMIR could resist to technical noise of WGBS. All these results showed DISMIR with the potential to be a precise and robust method for low-cost early cancer detection.


2019 ◽  
Author(s):  
Matthias Röthlisberger ◽  
Michael Sprenger ◽  
Emmanouil Flaounas ◽  
Urs Beyerle ◽  
Heini Wernli

Abstract. In the last decades, extremely hot summers (hereafter extreme summers) have challenged societies worldwide through their adverse ecological, economic and public health effects. In this study, extreme summers are identified at all grid points in the Northern Hemisphere in the upper tail of the July–August (JJA) seasonal mean 2-meter temperature (T2m) distribution, separately in ERA-Interim reanalyses and in 700 simulated years with the Community Earth System Model (CESM) large ensemble for present-day climate conditions. A novel approach is introduced to characterize the substructure of extreme summers, i.e., to elucidate whether an extreme summer is mainly the result of the warmest days being anomalously hot, or of the coldest days being anomalously mild, or of a general shift towards warmer temperatures on all days of the season. Such a statistical characterization can be obtained from considering so-called rank day anomalies for each extreme summer, that is, by sorting the 92 daily mean T2m values of an extreme summer and by calculating, for every rank, the deviation from the climatological mean rank value of T2m. Applying this method in the entire Northern Hemisphere reveals spatially strongly varying extreme summer substructures, which agree remarkably well in the reanalysis and climate model data sets. For example, in eastern India the hottest 30 days of an extreme summer contribute more than 70 % to the total extreme summer T2m anomaly, while the colder days are close to climatology. In the high Arctic, however, extreme summers occur when the coldest 30 days are substantially warmer than climatology. Furthermore, in roughly half of the Northern Hemisphere land area, the coldest third of summer days contribute more to extreme summers than the hottest third, which highlights that milder than normal coldest summer days are a key ingredient of many extreme summers. In certain regions, e.g., over western Europe and western Russia, the substructure of different extreme summers shows large variability and no common characteristic substructure emerges. Furthermore, we show that the typical extreme summer substructure in a certain region is directly related to the region’s overall T2m rank day variability pattern. This indicates that in regions where the warmest summer days vary particularly strongly from one year to the other, these warmest days are also particularly anomalous in extreme summers (and analogously for regions where variability is largest for the coldest days). Finally, for three selected regions, thermodynamic and dynamical causes of extreme summer substructures are briefly discussed, indicating that, for instance, the onset of monsoons, physical boundaries like the sea ice edge, or the frequency of occurrence of Rossby wave breaking, strongly determine the substructure of extreme summers in certain regions.


2011 ◽  
Vol 328-330 ◽  
pp. 1763-1767
Author(s):  
Jian Qiang Shen ◽  
Xuan Zou

A novel approach is proposed for measuring fabric texture orientations and recognizing weave patterns. Wavelet transform is suited for fabric image decomposition and Radon Transform is fit for line detection in fabric texture. Since different weave patterns have their own regular orientations in original image and sub-band images decomposed by Wavelet transform, these orientations features are extracted and used as SOM and LVQ inputs to achieve automatic recognition of fabric weave. The experimental results show that the neural network of LVQ is more effective than SOM. The contribution of this study is that it not only can identify fundamental fabric weaves but also can classify double layer and some derivative twill weaves such as angular twill and pointed twill.


Sign in / Sign up

Export Citation Format

Share Document