Minimizing Total Earliness and Total Tardiness on Single Machine with Release Dates

Author(s):  
Elkanah Oyetunji ◽  
Ayodeji E. Oluleye

This paper considers the bicriteria scheduling problem of minimizing the total earliness and the total tardiness on a single machine with release dates. In view of the fact that the problem has been characterized as NP-Hard, we propose two approximation algorithms (labeled as ETA1 and ETA2) for solving the problem. The proposed algorithms were compared with the MA heuristic selected from the literature. The two criteria (the total earliness and the total tardiness) were aggregated together into a linear composite objective function (LCOF). The performances of the algorithms were evaluated based on both effectiveness and efficiency. The algorithms were tested on a set of 1200 randomly generated single machine scheduling problems. Experimental results show that both the ETA1 and ETA2 algorithms outperformed (in terms of effectiveness and efficiency) the MA heuristic under all the considered problem sizes. Also, the ETA1 algorithm outperformed the ETA2 algorithm when the number of jobs (n) ranges between 20 and 500.

2020 ◽  
Vol 1 (1) ◽  
pp. 19-36
Author(s):  
V.V. Romanuke ◽  

Abstract. A schedule ensuring the exactly minimal total tardiness can be found with the respective integer linear programming problem. An open question is whether the exact schedule computation time changes if the job release dates are input into the model in reverse order. The goal is to ascertain whether the job order in tight-tardy progressive single machine scheduling with idling-free preemptions influences the speed of computing the exact solution. The Boolean linear programming model provided for finding schedules with the minimal total tardiness is used. To achieve the said goal, a computational study is carried out with the purpose of estimating the averaged computation time for both ascending and descending orders of job release dates. Instances of the job scheduling problem are generated so that schedules which can be obtained trivially, without the exact model, are excluded. As in the case of equal-length jobs, it has been ascertained that the job order really influences the speed of computing schedules whose total tardiness is minimal. Scheduling two to five jobs is executed on average faster by the descending job order input, where 1 to 3 % speed-up is expected. Further increment of the number of jobs to be scheduled cannot guarantee any speed-up even on average. This result is similar to that in the case of equal-length jobs, but there is no regularity in such an efficient job order input. Without any assurance for a single job scheduling problem, the efficient exact minimization of total tardiness by the descending job order input must be treated as on average only.


This study reports the single machine scheduling problem for finding the minimum the total weighted tardiness. As the problem is non-deterministic polynomial-time hard (NP-hard), the problem might not be answered by the exact solution techniques. Henceforth, different heuristics and meta-heuristics were recommended by different practitioners to tackle the problem. A modified elephant herd optimization algorithm (MEHOA) is investigated in the present work to solve the single machine total weighted tardiness scheduling problem (SMTWTSP). The performance of the anticipated approach is studied with the test instances available in the OR library. The outcomes are compared with several different algorithms offered in the literature and indicate the efficacy of the developed methodology.


2019 ◽  
Vol 276 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Alessandro Agnetis ◽  
Bo Chen ◽  
Gaia Nicosia ◽  
Andrea Pacifici

Sign in / Sign up

Export Citation Format

Share Document