Study of Structural, Elastic Properties and their Pressure Dependence in IrN Compound

Author(s):  
Shubhangi Soni ◽  
Arvind Jain ◽  
Kamal Kumar Choudhary ◽  
Netram Kaurav

A theoretical study of the elastic behavior in IrN compound using effective interionic interaction potential is carried out. The estimated values of phase transition pressure and the vast volume discontinuity in pressure-volume (PV) phase diagram indicate the structural phase transition from zinc blende (B3) to CsCl structure (B2). C11, C12 and C44 increase nearly linearly with pressure. At phase transition pressure IrN has shown a discontinuity in second order elastic constants, which is in accordance with the first-order character of the phase transition.

2016 ◽  
Vol 1141 ◽  
pp. 39-43 ◽  
Author(s):  
Ashok K. Ahirwar ◽  
Mahendra Aynyas ◽  
Yeshvir Singh Panwar ◽  
Sankar P. Sanyal

A theoretical study of first order pressure induced structural phase transition, mechanical and thermal properties of YBi and ScBi compounds have been investigated using the modified inter-ionic potential theory (MIPT), which parametrically includes the effect of coulomb screening. The calculated results of phase transition pressure of ScBi and YBi are agree well with the available theoretical data. We have also reported the second order elastic constants and Debye temperature of these compounds. Our calculated values of second order elastic constant C11, C12 and C44 are 128.4, 29.5, 30.2 GPa and 123.1, 29.7, 30.3 GPa for ScBi and YBi compounds respectively. These results are in good agreement with available theoretical data. We have also estimated Debye temperatures (θD) are 80K, 86K, for ScBi and YBi compounds respectively.


Open Physics ◽  
2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Purvee Bhardwaj ◽  
Sadhna Singh ◽  
Neeraj Gaur

AbstractIn the present paper we have investigated the high-pressure, structural phase transition of Barium chalcogenides (BaO, BaSe and BaTe) using a three-body interaction potential (MTBIP) approach, modified by incorporating covalency effects. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from TBIP show a reasonably good agreement with experimental data. Here, the transition pressure, NaCl-CsCl structure increases with decreasing cation-to-anion radii ratio. In addition, the elastic constants and their combinations with pressure are also reported. It is found that TBP incorporating a covalency effect may predict the phase transition pressure, the elastic constants and the pressure derivatives of other chalcogenides as well.


2010 ◽  
Vol 24 (10) ◽  
pp. 1235-1244 ◽  
Author(s):  
MINA TALATI ◽  
PRAFULLA K. JHA

The high-pressure induced structural phase transitions and pressure induced elastic and anharmonic behavior of boron compounds viz. BN, BP, and BAs have been investigated using an inter-ionic potential approach based on charge transfer effect. These compounds go to NaCl phase (B1) under pressure from zinc blende phase (B3). The variations of second-order elastic constants and their combinations follow a systematic trend with pressure, identical to that observed in other compounds of zinc blende structure family. Shear stiffness constants decrease with increasing pressure up to phase transition pressure. The bulk moduli of these compounds are in reasonably good agreement with other theoretical and experimental data. The values of phase transition pressure of these compounds obtained by using the present approach are also in good agreement with those predicted by using the pseudo potential approach. The present approach has also succeeded in predicting the Born and relative stability criterion for stable zinc blende phase of these compounds. We also present a set of third-order elastic constants and pressure derivatives of second-order elastic constants for boron compounds.


Author(s):  
Saligram Verma ◽  
Arvind Jain ◽  
Kamal Kumar Choudhary ◽  
Netram Kaurav

The high-pressure technique is useful to understand physical properties because the technique can directly control bond length and phase transition. As a general trend, the pressure-induced phase transition causes an increase of coordination number with a drastic change of their physical properties. Here, we attempt to explore the pressure-induced phase transitions from the sixfold-coordinated NaCl structure (B1) to the eightfold-coordinated CsCl structure (B2) in MgxCd1−xO by applying an effective interionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. Assuming that both the ions are polarizable, the Slater-Kirkwood variational method is employed to estimate the vdW coefficients for parent compounds. The estimated values of the phase transition pressure (Pt) increase with Mg concentration. The vast volume discontinuity in pressure volume phase diagram identifies the structural phase transition from B1 to B2 structure. The results obtain from the present calculations requires the complete understanding of many physical interactions that are essential to ternary oxides, containing elements with size and chemical mismatch, will lead to a consistent explanation of the documented structural properties.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050116
Author(s):  
M. Saint-Paul ◽  
C. Opagiste ◽  
C. Guttin

Ultrasonic velocity measurements could be performed on a good quality single crystal of [Formula: see text] around its transition around 80 K. The behavior of the stiffness components demonstrates a first-order transition. The temperature dependence of the longitudinal elastic stiffness components [Formula: see text] and [Formula: see text] can be analyzed by the classical Landau theory and assuming a stricter coupling between the strain and the order parameter. A theoretical approach and experimental results are discussed.


2012 ◽  
Vol 26 (14) ◽  
pp. 1250077
Author(s):  
DINESH VARSHNEY

We evolve an effective interionic interaction potential (EIoIP) to investigate the pressure induced phase transitions from Zinc blende (B3) to Rocksalt (B1) structure in ZnSe semiconductor. The developed potential consists of the long-range Coulomb and three-body interactions (TBI) and the Hafemeister and Flygare type short-range (SR) overlap repulsion extended upto the second neighbor ions and the van der Waals (vdW) interaction. The three-body interactions arise from the electron-shell deformation when the nearest-neighbor ions overlap and has been employed for detailed studies of pressure-induced phase-transition behavior of ZnSe semiconductors. Our calculated value of the phase transition pressure (Pt) is higher and the magnitude of the discontinuity in volume at the transition pressure is consistent with reported data. The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. It is inferred that the vdW interaction is effective in obtaining the Debye temperature, Gruneisen parameter, thermal expansion coefficient and compressibility. It is argued that the model with TBI (model II) has yielded somewhat more realistic predictions of the phase-transition and high-pressure behavior as compared to usual two-body potentials (model I) based on phenomenological approach.


Author(s):  
Arvind Jain ◽  
Shubhangi Soni ◽  
Sanjay Shah ◽  
Netram Kaurav

We report a phenomenological model based calculation of pressure-induced structural phase transition and elastic properties of ZrN compound. Gibb’s free energy is obtained as a function of pressure by applying an effective interionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. From the present study, we predict a structural phase transition from NaCl structure (B1) to the CsCl structure (B2). The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of NaCl type structure family.


2006 ◽  
Vol 987 ◽  
Author(s):  
Dinesh Varshney ◽  
Netram Kaurav ◽  
Kamal Kumar Choudhary ◽  
R. Kinge ◽  
R. K. Singh

AbstractPressure-induced structural aspects of NaCl-type (B1) to CsCl-type (B2) structure in MgX [X = S, Se, Te] semiconductors are presented. An effective interionic interaction potential (EIOP) with long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach is developed. Particular attention is devoted to evaluate the vdW coefficients following the variational method, as both the cation and the anion are polarizable. Our result on vast volume discontinuity in pressure volume phase diagram identifies the structural phase transition from B1 to B2 structure. The estimated value of the phase transition pressure (Pt) is consistent with results previously published. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of NaCl type structure family.


Open Physics ◽  
2007 ◽  
Vol 5 (4) ◽  
Author(s):  
Sadhna Singh ◽  
R. Singh ◽  
Atul Gour

AbstractThe high pressure phase transition and elastic behavior of rare earth monoselenides (CeSe, EuSe and LaSe) which crystallize in a NaCl-structure have been investigated using the three body interaction potential (TBIP) approach. These interactions arise due to the electronshell deformation of the overlapping ions in crystals. The TBP model consists of a long range Coulomb, three body interactions and the short range overlap repulsive forces operative up to the second neighboring ions. The authors of this paper estimated the values of the phase transition pressure and the associated volume collapse to be closer than other calculations. Thus, the TBIP approach also promises to predict the phase transition pressure and pressure variations of elastic constants of lanthanide compounds.


Sign in / Sign up

Export Citation Format

Share Document