Hybrid Electro-Active Papers of Cellulose and Carbon Nanotubes for Bio-Mimetic Actuators

2006 ◽  
Vol 324-325 ◽  
pp. 843-846 ◽  
Author(s):  
Sung Ryul Yun ◽  
Li Jie Zhao ◽  
Nian Gui Wang ◽  
Jae Hwan Kim

Electro-Active Paper (EAPap) materials based on cellulose are attractive for many applications because of their low voltage operation, lightweight, dryness, low power consumption, bio-degradability. The construction of EAPap actuator has been achieved using the cellulose paper film coated with thin gold electrode layers. This actuator showed a reversible and reproducible bending movement. In order to improve both force and displacement of this, efforts are made to construct hybrid EAPap actuators using cellulose paper coated with carbon nanotubes (CNT). To coat the CNT, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) are dispersed in polyaniline (PANI) matrix, and the solution is coated on the EAPap by using a spin coater. It is expected that the use of CNT can improve the force output by enhancing the stiffness of the hybrid EAPap actuator. Furthermore, the presence of the PANI may improve the actuation performance of the EAPap material. The performance of hybrid EAPap actuators is tested in an environmental chamber in terms of free displacement, blocked force and electrical power consumption. The performance of hybrid actuators is investigated for bio-mimetic applications.

2006 ◽  
Vol 321-323 ◽  
pp. 166-169
Author(s):  
Jae Hwan Kim ◽  
Sung Ryul Yun ◽  
Chun Suk Song

Cellulose-based Electro-Active Paper (EAPap) has been studied as an attractive electroactive polymer material for artificial muscles due to its low cost, availability, lightweight, large displacement output, low actuation voltage and low power consumption. However, the force output of EAPap is small since paper is so flexible that the bending stiffness is low. In this paper, the cellulose based EAPap material is enhanced by using carbon nanotubes with cellulose paper. Coating of multi-walled carbon nanotubes mixed with polyaniline on EAPap as well as MWNT dispersion in the paper are tried to enhance the force output of the EAPap. The coating process of MWNT/PANI on the EAPap and the dispersion of MWNT in the cellulose paper are explained. The performance of the hybrid EAPap actuators is evaluated in terms of tip displacement, blocking force and electrical power consumption. The power output and the actuator efficiency are improved.


Aerospace ◽  
2005 ◽  
Author(s):  
Jaehwan Kim ◽  
Zoubeida Ounaies ◽  
Sung-Ryul Yun ◽  
Yukeun Kang ◽  
Seung-Hun Bae

Electro-Active Paper (EAPap) materials based on cellulose are attractive for many applications because of their low voltage operation, lightweight, dryness, low power consumption, bio-degradable. The construction of EAPap actuator has been achieved using the cellulose paper film coated with thin electrode layers. This actuator showed a reversible and reproducible bending movement. In order to improve both force and displacement of this, EAPap actuator efforts are made to construct the device using increasing number of complementary conducting polymer layers and carbon nanotubes. A hybrid EAPap actuator is developed using single-wall carbon nanotubes (CNT)/Polyaniline (PANi) electrodes, as a replacement to gold electrodes. It is expected that the use of CNT can enhance the stiffness of the tri-layered actuator, thus improving the force output. Furthermore, the presence of the CNT may increase the actuation performance of the EAPap material. CNT is dispersed in NMP(1-Methyl-2-pyrrolidine), and the resulting solution is used as a solvent for PANi. The CNT/PANi/NMP solution is then cast on the EAPap by spin coating. The coated EAPap is dried in an oven. The effect of processing parameters on the final performance of the CNT/PANi electrodes is assessed. The final performance of the electrodes is quantified in terms of the electrical conductivity under dc and ac measurement conditions. The actuation output of the CNT/PANi/EAPap samples is tested in an environmental chamber in terms of free displacement and blocked force. The performance of the hybrid actuators is also investigated in terms of frequency, voltage, humidity and temperature to help shed light on the mechanism responsible for actuation. Comparison of these results in that of the EAPap with PANi and gold electrodes are also accomplished. EAPap materials are bio-degradable that is important property for artificial muscle actuators for biomimetic with controlled properties and shape.


RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 1194-1199
Author(s):  
Wan-hong Sun ◽  
Lan-feng Hui ◽  
Qian Yang ◽  
Guo-dong Zhao

When MWCNTs are added into cellulose paper, the efficiency of particle interception is improved.


2013 ◽  
Vol 19 (S2) ◽  
pp. 1230-1231
Author(s):  
R. Arenal

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


Micron ◽  
2012 ◽  
Vol 43 (2-3) ◽  
pp. 428-434 ◽  
Author(s):  
Y. Beyer ◽  
R. Beanland ◽  
P.A. Midgley

Acta Naturae ◽  
2011 ◽  
Vol 3 (1) ◽  
pp. 99-106 ◽  
Author(s):  
E A Smirnova ◽  
A A Gusev ◽  
O N Zaitseva ◽  
E M Lazareva ◽  
G E Onishchenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document