Monitoring of Blood Flow by Drug Stimulation on Mouse Brain Using Non-Invasive Photoacoustic Imaging Technology

2007 ◽  
Vol 364-366 ◽  
pp. 1123-1127
Author(s):  
Shi Hua Yang ◽  
Ye Qi Lao

The highlight of photoacosutic imaging (PAI) is a method that combines ultrasonic resolution with high contrast due to light absorption. Photoacoustic signals carry the information of the light absorption distribution of biological tissue, which is often related to its character of structure, physiological and pathological changes because of different physiology conditions in response to different light absorption coefficients. A non-invasive PAI system was developed and successfully acquired in vivo images of mouse brain. Based on the intrinsic PA signals from the brain, the vascular network and the detailed structures of the mouse cerebral cortex were clearly visualized. The ability of PAI monitoring of cerebral hemodynamics was also demonstrated by mapping of the mouse superficial cortex with and without drug stimulation. The extracted PA signals intensity profiles obviously testified that the cerebral blood flow (CBF) in the mouse brain was changed under the stimulation of acetazolamide (ACZ). The experimental results suggest that PAI can provide non-invasive images of blood flow changes, and has the potential for brain function detection.

Author(s):  
Enrico D.F. Motti ◽  
Hans-Georg Imhof ◽  
Gazi M. Yasargil

Physiologists have devoted most attention in the cerebrovascular tree to the arterial side of the circulation which has been subdivided in three levels: 1) major brain arteries which keep microcirculation constant despite changes in perfusion pressure; 2) pial arteries supposed to be effectors regulating microcirculation; 3) intracerebral arteries supposed to be deprived of active cerebral blood flow regulating devices.The morphological search for microvascular effectors in the cerebrovascular bed has been elusive. The opaque substance of the brain confines in vivo investigation to the superficial pial arteries. Most morphologists had to limit their observation to the random occurrence of a favorable site in the practically two-dimensional thickness of diaphanized histological sections. It is then not surprising most investigators of the cerebral microcirculation refer to an homogeneous network of microvessels interposed between arterioles and venules.We have taken advantage of the excellent depth of focus afforded by the scanning electron microscope (SEM) to investigate corrosion casts obtained injecting a range of experimental animals with a modified Batson's acrylic mixture.


Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.


1994 ◽  
Vol 9 (2) ◽  
pp. 105-109
Author(s):  
G Mecheri ◽  
Y Bissuel ◽  
J Dalery ◽  
JL Terra ◽  
G Balvay ◽  
...  

SummaryIn vivo NMR 31p spectroscopy is a non invasive, non ionizing method of exploration of energy and phospholipid metabolism in the brain. This study consisted of comparing 31p spectra in five patients with Senile Dementia of Alzheimer Type (SDAT) with those of four controls of similar ages. Abnormal phosphonionocsters (PME) concentrations, either high or low, were found in the patients, but statistical analysis did not elicit any significant difference relative to controls.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2006 ◽  
Vol 44 (6) ◽  
pp. 501-509 ◽  
Author(s):  
Jan Näslund ◽  
Jonas Pettersson ◽  
Thomas Lundeberg ◽  
Dag Linnarsson ◽  
Lars-Göran Lindberg

2018 ◽  
Author(s):  
Eylan Yutuc ◽  
Roberto Angelini ◽  
Mark Baumert ◽  
Natalia Mast ◽  
Irina Pikuleva ◽  
...  

AbstractDysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatisation in combination with micro-liquid-extraction for surface analysis and liquid chromatography - mass spectrometry to image sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400 µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low abundance and difficult to ionise sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild type and cholesterol 24S-hydroxylase knock-out mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.SignificanceThe brain is a remarkably complex organ and cholesterol homeostasis underpins brain function. It is known that cholesterol is not evenly distributed across different brain regions, however, the precise map of cholesterol metabolism in the brain remains unclear. If cholesterol metabolism is to be correlated with brain function it is essential to generate such a map. Here we describe an advanced mass spectrometry imaging platform to reveal spatial cholesterol metabolism in situ at 400 µm resolution on 10 µm tissue slices from mouse brain. We mapped, not only cholesterol, but also other biologically active sterols arising from cholesterol turnover in both wild type and mice lacking cholesterol 24-hydroxylase (Cyp46a1), the major cholesterol metabolising enzyme.


Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 389
Author(s):  
Kogulan Paulmurugan ◽  
Vimalan Vijayaragavan ◽  
Sayantan Ghosh ◽  
Parasuraman Padmanabhan ◽  
Balázs Gulyás

Functional Near-Infrared Spectroscopy (fNIRS) is a wearable optical spectroscopy system originally developed for continuous and non-invasive monitoring of brain function by measuring blood oxygen concentration. Recent advancements in brain–computer interfacing allow us to control the neuron function of the brain by combining it with fNIRS to regulate cognitive function. In this review manuscript, we provide information regarding current advancement in fNIRS and how it provides advantages in developing brain–computer interfacing to enable neuron function. We also briefly discuss about how we can use this technology for further applications.


1977 ◽  
Vol 55 (4) ◽  
pp. 934-942 ◽  
Author(s):  
Thomas W. Dolby ◽  
Lewis J. Kleinsmith

The experiments presented in this paper examine the mechanisms underlying the ability of cannabinoids to alter the in vivo levels of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) in mouse brain. It was found that changes in cyclic AMP levels are a composite result of direct actions of cannabinoids on adenylate cyclase (EC 4.6.1.1) activity and indirect actions involving the potentiation or inhibition of biogenic amine induced activity of adenylate cyclase. Furthermore, the long-term intraperitoneal administration of 1-(−)-Δ-tetrahydrocannabinol to mice produced a form of phosphodiesterase (EC 3.1.4.17) in the brain whose activity is not stimulated by Ca2+, although its basal specific activity is similar to that of control animals. In vitro, the presence of the cannabinoids caused no significant changes in activity of brain PDE at the concentrations tested. Some correlations are presented which imply that many of the observed behavioral and physiological actions of the cannabinoids in mammalian organisms may be mediated via cyclic AMP mechanisms.


Author(s):  
L. Litt ◽  
M.T. Espanol

We believe there are important roles for in vivo NMR spectroscopy techniques in studies of protection and treatment in stroke. Perhaps the primary utility of in vivo NMR spectroscopy is to establish the relevance of metabolic integrity, intracellular pH, and intracellular energy stores to concurrent changes occurring both at gross physiological levels (e.g., changes in cerebral blood flow, or blood oxygenation), and at microscopic or cellular levels. It has long been known that the brain is exquisitely sensitive to deprivations of oxygen, glucose, and cerebral blood flow. Routine human surgery on a limb takes place every day with tourniquets stopping all blood flow for up to two hours. In contrast, the deprivation of all blood flow to the brain (global ischemia) for approximately 5 minutes can result in severe, permanent brain damage. Research has gone on for more than 30 years to understand why the brain’s revival time is so much shorter, and to discover brain biochemical interventions that might dramatically extend the brain’s intolerance beyond 5 minutes, and therefore be relevant to protection and treatment of stroke. (Kogure and Hossmann, 1985; 1993) Stroke, defined as a permanent neurologic deficit arising from the death of brain cells, kills ∼ 150,000 people in the U.S.A. each year, and is the third leading cause of death (Feinleib et al., 1993). It is the next malady to escape, once one has dodged death from cardiovascular disease and cancer. Many, if not most, U.S.A. stroke victims will receive neurological clinical care not substantially different from what was provided 30 years ago. Most stroke patients will be put in intensive care units where blood pressure will be regulated and kept in a “safe” range, with the body given supportive care and the brain given an opportunity to heal itself. The problem of stroke is actually quite complex because there are several different kinds of stroke (ischemic, hemorrhagic, etc.), and because numerous systemic physiological factors are of relevance. Nevertheless, exciting advances in brain biochemistry suggest that stroke therapy and prophylaxis axe likely to improve dramatically in the near future (Zivin and Choi, 1991).


Sign in / Sign up

Export Citation Format

Share Document