Osseoinduction Evaluation of Hydroxyapatite and Zinc Containing Hydroxyapatite Granules in Rabbits

2011 ◽  
Vol 493-494 ◽  
pp. 252-257 ◽  
Author(s):  
L. Nascimento ◽  
M. Medeiros ◽  
J. Calasans-Maia ◽  
A. Alves ◽  
Antonella M. Rossi ◽  
...  

This study investigated the osteoinductive potential of granules of stoichiometric hydroxyapatite (HA) and 0.5% zinc containing hydroxyapatite (ZnHA) in intramuscular (IM) site of rabbit’s abdomen. The biomaterials were both used in granular form, with 75% porosity and particle diameter between 450 and 500μm, sintered at 1100°C. Both materials performed adequately on a multiparametric in vitro cytocompatibility assay, indicating their suitability for in vivo testing. After approval by the Ethics Commission on Teaching and Research in Animals, fifteen rabbits were submitted to general anesthesia, incision and tissue dilatation, and a small site was created for HA (right incision) and ZnHA (left incision) intramuscular implantation. The animals were killed after 2, 4 and 12 weeks for biomaterials and surrounding tissues removal. Histological analysis after 2 weeks revealed the presence of granulation tissue surrounding biomaterials with multinucleated giant cells and no newly formed bone for both materials. After 4 weeks there was fibrous tissue involving the material and few inflammatory cells. Following 12 weeks it was observed the presence of connective tissue surrounding the biomaterial, cellularized enough for the two experimental groups, but it was not observed the presence of bone matrix associated with the biomaterials. We conclude that both biomaterials are cytocompatible and did not present the property of osseoinduction after 12 weeks of implantation.

2011 ◽  
Vol 493-494 ◽  
pp. 247-251 ◽  
Author(s):  
E. Barros ◽  
J. Alvarenga ◽  
Gutemberg Alves ◽  
B. Canabarro ◽  
G.V.O. Fernandes ◽  
...  

The objective of this study was to investigate the in vitro and in vivo biological responses to carbonate apatite (cHA) in comparison to hydroxyapatite (HA). Spheres (400<ø>500 μm) of both materials were synthesized under 5°C (cHA) and 90°C (HA) and not sintered. The in vitro cytocompatibility was determined by the XTT assay, according to ISO 10993-5:2009, after exposure of MC3T3-E1 cells to the materials extracts. Ethics Commission on Teaching and Research in Animals approved this project (CEPA/NAL 193/10) and, subsequently, the biomaterials were grafted in the subcutaneous tissues of mice (n=15). After 1 and 3 weeks, five animals of each group were killed for samples removal containing biomaterials and surrounding tissues for histological examination. Semi-serial (5-μm thick) sections were cut and stained with Hematoxylin and Eosin (HE) and the presence of inflammatory infiltrates and biomaterials resorption were evaluated. The experimental group of 3 weeks didn’t show the presence of spheres of both biomaterials and few spheres were observed after 1 week. Histological analysis showed the granulation tissue around the biomaterials with the presence of multinucleated giant cells. After 3 weeks it was observed the presence of fibrous tissue around biomaterials and few inflammatory cells. No signals of tissue necrosis were observed in both groups in all experimental studied periods. Nanostructured carbonate apatite spheres are cytocompatible, biocompatible and present initial biosorption on the subcutaneous comparable to stoichiometric HA, indicating its suitability for further studies on regenerative medicine.


2019 ◽  
Vol 108 (1) ◽  
pp. 282-297 ◽  
Author(s):  
Ana Carolina Cestari Bighetti ◽  
Tania Mary Cestari ◽  
Paula Sanches Santos ◽  
Ricardo Vinicius Nunes Arantes ◽  
Suelen Paini ◽  
...  

2020 ◽  
Vol 31 (18) ◽  
pp. 2002-2020
Author(s):  
Arnat Balabiyev ◽  
Nataly P. Podolnikova ◽  
Aibek Mursalimov ◽  
David Lowry ◽  
Jason M. Newbern ◽  
...  

Our study reveals previously unrecognized actin-based zipper-like structures (ZLSs) formed between macrophage-derived multinucleated giant cells undergoing fusion in vivo and in vitro. It is shown that podosomes are precursors of these structures. The transition of podosomes into ZLSs is induced by bridging plasma membranes by E-cadherin and nectin-2.


2003 ◽  
Vol 98 (4) ◽  
pp. 854-859 ◽  
Author(s):  
Kenkou Maeda ◽  
Masaaki Mizuno ◽  
Toshihiko Wakabayashi ◽  
Syuntarou Takasu ◽  
Tetsurou Nagasaka ◽  
...  

Object. The nature and origin of multinucleated giant cells in glioma have not been made clear. To investigate the phosphorylation of intermediate filaments, the authors studied multinucleated giant cells in vitro and in vivo by using mitosis-specific phosphorylated antibodies. Methods. Cultured human glioma cells were immunostained with monoclonal antibodies (mAbs) 4A4, KT13, and TM71, which recognized the phosphorylation of vimentin at Ser55, glial fibrillary acidic protein at Ser13, and vimentin at Ser71, respectively. Subsequently, the nature of multinucleated giant cells was investigated using laser scanning confocal microscopy. In addition, paraffin-embedded tissue sections obtained in three patients with giant cell glioblastoma were also investigated. Multinucleated giant cells were immunoreacted with the mAb 4A4 and not with KT13 and TM71 in vitro and in vivo. In addition, the authors obtained these results in multinucleated giant cells under natural conditions, without drug treatments. Conclusions. Findings in this investigation indicated that multinucleated giant cells are those remaining in mitosis between metaphase and telophase, undergoing neither fusion nor degeneration.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


2006 ◽  
Vol 14 (4) ◽  
pp. 203-206 ◽  
Author(s):  
Michael S. Wertheim ◽  
William D. Mathers ◽  
Lyndell Lim ◽  
Angela S. Watkins ◽  
Friederike Mackensen ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1357
Author(s):  
Andreea-Mariana Negrescu ◽  
Anisoara Cimpean

The critical role of the immune system in host defense against foreign bodies and pathogens has been long recognized. With the introduction of a new field of research called osteoimmunology, the crosstalk between the immune and bone-forming cells has been studied more thoroughly, leading to the conclusion that the two systems are intimately connected through various cytokines, signaling molecules, transcription factors and receptors. The host immune reaction triggered by biomaterial implantation determines the in vivo fate of the implant, either in new bone formation or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and in vivo results were reported. This led to a shift in the development of biomaterials towards implants with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain a proper bone regeneration process. In this context, various approaches, such as the modification of chemical/structural characteristics or the incorporation of bioactive molecules, have been employed in order to modulate the crosstalk with the immune cells. The current review provides an overview of recent developments in such applied strategies.


Development ◽  
1981 ◽  
Vol 61 (1) ◽  
pp. 277-287
Author(s):  
A. J. Copp

The number of trophoblast giant cells in outgrowths of mouse blastocysts was determined before, during and after egg-cylinder formation in vitro. Giant-cell numbers rose initially but reached a plateau 12 h before the egg cylinder appeared. A secondary increase began 24 h after egg-cylinder formation. Blastocysts whose mural trophectoderm cells were removed before or shortly after attachment in vitro formed egg cylinders at the same time as intact blastocysts but their trophoblast outgrowths contained fewer giant cells at this time. The results support the idea that egg-cylinder formation in vitro is accompanied by a redirection of the polar to mural trophectoderm cell movement which characterizes blastocysts before implantation. The resumption of giant-cell number increase in trophoblast outgrowths after egg-cylinder formation may correspond to secondary giant-cell formation in vivo. It is suggested that a time-dependent change in the strength of trophoblast cell adhesion to the substratum occurs after blastocyst attachment in vitro which restricts the further entry of polar cells into the outgrowth and therefore results in egg-cylinder formation.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 227 ◽  
Author(s):  
Bayan Darwesh ◽  
Hibah Aldawsari ◽  
Shaimaa Badr-Eldin

(1) Background: Fluconazole, used orally for vaginal candidiasis, has reported gastrointestinal side effects. Therefore, researchers directed towards the drug vaginal delivery. However, vaginal delivery is limited by poor retention and leakage. Thus, this work aimed at exploring chitosan/anion polyelectrolyte complex (PEC) for the formulation of fluconazole vaginal inserts with controlled release and appreciable mucoadhesion. (2) Methods: PECs were prepared and assessed for interactions. Fluconazole PEC based vaginal inserts were prepared by lyophilization using mannitol. 3151 factorial design was applied to investigate the effect of the anion type and Chitosan/anion ratio on the inserts mucoadhesion and release properties. The optimized insert [based on 5:5 chitosan: anionic polymer (sodium alginate)] release was modulated by the release retardant; Compritol® 888. The selected formulation was subjected to microbiological and histological evaluation. (3) Results: Fluconazole inserts showed satisfactory drug content, acceptable friability percentages and highest swelling indices at six hours. Statistical analysis showed significant effect of the studied factors on detachment force and release properties. Microbiological assays revealed significantly higher antifungal activity of inserts compared to fluconazole solution. Reduced inflammatory cells were confirmed by histological evaluation. (4) Conclusion: CH/Alg based vaginal insert could be a promising platform for vaginal delivery of antifungal drugs used for vaginal candidiasis treatment.


Sign in / Sign up

Export Citation Format

Share Document