Preparation and Mechanical Properties of Ultra-Fine Grain Medium-Carbon Steel Based on Equal-Channel Angular Pressing
A new technology of preparing submicron medium-carbon steel quickly using martensitic steel by equal-channel angular pressing is developed. The technology combines martensite phase transformation with severe plastic deformation. In this research, martensitic steel is heated to 923K quickly and held for appropriate time, then equal-channel angular pressing is implemented. Supersaturated ferrites of average grain size within 0.5μm are obtained by the interaction of dislocation intersection, dynamic recrystallization and strain-induced phase transformation. At the same time, strain-induced phase transformation leads to dispersive precipitation of supersaturated carbon particles in the form of carbide inside grains or in grain boundaries. The optimal size of ferrite grains and the optimal distribution of carbides are acquired by controlling tempering temperature and time. The results show that ultra-fine grained materials prepared by this technology possess superior thermal stability.