Efficiency Analysis of Gas Turbine Combined-Cycle Fed with Synthetic Natural Gas (SNG) and Mixture of Syngas and SNG

2015 ◽  
Vol 656-657 ◽  
pp. 113-118
Author(s):  
Hsiu Mei Chiu ◽  
Po Chuang Chen ◽  
Yau Pin Chyou ◽  
Ting Wang

The effect of synthetic natural gas (SNG) and mixture of syngas and SNG fed to Natural Gas Combined-Cycle (NGCC) plants is presented in this study via a system-level simulation model. The commercial chemical process simulator, Pro/II®V8.1.1, was used in the study to build the analysis model. The NGCC plant consists of gas turbine (GT), heat recovery steam generator (HRSG) and steam turbine (ST). The study envisages two analyses as the basic and feasibility cases. The former is the benchmark case which is verified by the reference data with the GE 7FB gas turbine. According to vendor’s specification, the typical net plant efficiency of GE 7FB NGCC with two gas turbines to one steam turbine is 57.5% (LHV), and the efficiency is the benchmark in the simulation model built in the study. The latter introduces a feasibility study with actual parameters in Taiwan. The SNG-fed GE 7FB based combined-cycle is evaluated, and the mixture of SNG and syngas is also evaluated to compare the difference of overall performance between the two cases. The maximum ratio of syngas to SNG is 0.14 due to the constraint for keeping the composition of methane at a value of 80 mol%, to meet the minimum requirement of NG in Taiwan. The results show that the efficiency in either case of SNG or mixture of SNG and syngas is slightly lower than the counterpart in the benchmark one. Because the price of natural gas is much higher than that of coal, it results in higher idle capacity of NGCC. The advantage of adopting SNG in Taiwan is that it could increase the capacity factor of combined-cycles in Taiwan. The study shows a possible way to use coal and reduce the CO2emission, since coal provides nearly half of the electricity generation in Taiwan in recent years.

Author(s):  
V. A. Bulanin

Abstract. Aim. Despite the obvious expediency of their widespread implementation, gas turbine (GT) and combined cycle gas turbine (CCGT) plants were only used in limited quantities in the former USSR and CIS countries. Due to the exhaustion of possibilities to increase the fuel use efficiency and return on investment (ROI) in steam-turbine combined heat and power (CHP) plants, the development of GT and CCGT plants becomes an urgent problem. In current global practice, the primary fuel for gas turbines and combined cycle gas turbines is natural gas. However, until recently, there has been a lack of experience in the design, construction and operation of GT and CCGT plants in the CIS countries. Method. Due to the ad hoc nature of research in this area, it was necessary to systematise the results of existing studies and assess the state of research at the world level taking regional characteristics into account. Results. The article presents the main considerations and potential effectiveness of the use of gas turbines. Basic gas turbine construction schemes are investigated along with their techno-economic characteristics and an assessment of their comparative utility. Conclusion. Considering the widespread availability of natural gas, it is recommended that gas turbine and combined-cycle plants be installed as part of the process of technical re-equipment in the fuel and energy complex, industry, agriculture and municipal energy sectors as part of the design and construction of new energy sources in the light of positive world experience and the current level of development of gas turbine technologies. Ubiquitous implementation of gas turbine units in the centres supplying heat and electric loads will reduce the regional economy’s need for energy fuel and ensure an increase in energy capacity without the need to construct new complex and uneconomic steam turbine power plants. 


Author(s):  
Mun Roy Yap ◽  
Ting Wang

Biomass can be converted to energy via direct combustion or thermo-chemical conversion to liquid or gas fuels. This study focuses on burning producer gases derived from gasifying biomass wastes to produce power. Since the producer gases are usually low calorific values (LCV), the power plants performance under various operating conditions has not yet been proven. In this study, system performance calculations are conducted for 5MWe power plants. The power plants considered include simple gas turbine systems, steam turbine systems, combined cycle systems, and steam injection gas turbine systems (STIG) using the producer gas with low calorific values at approximately 30% and 15% of the natural gas heating value (on a mass basis). The LCV fuels are shown to impose high back compressor pressure and produces increased power output due to increased fuel flow. Turbine nozzle throat area is adjusted to accommodate additional fuel flows to allow compressor operate within safety margin. The best performance occurs when the designed pressure ratio is maintained by widening nozzle openings, even though the TIT is reduced under this adjustment. Power augmentations under four different ambient conditions are calculated by employing gas turbine inlet fog cooling. Comparison between inlet fog cooling and steam injection using the same amount of water mass flow indicates that steam injection is less effective than inlet fog cooling in augmenting power output. Maximizing steam injection, at the expense of supplying the steam to the steam turbine, significantly reduces both the efficiency and the output power of the combined cycle. This study indicates that the performance of gas turbine and combined cycle systems fueled by the LCV fuels could be very different from the familiar behavior of natural gas fired systems. Care must be taken if on-shelf gas turbines are modified to burn LCV fuels.


1983 ◽  
Vol 105 (4) ◽  
pp. 844-850 ◽  
Author(s):  
I. G. Rice

High-cycle pressure-ratio (38–42) gas turbines being developed for future aircraft and, in turn, industrial applications impose more critical disk and casing cooling and thermal-expansion problems. Additional attention, therefore, is being focused on cooling and the proper selection of materials. Associated blade-tip clearance control of the high-pressure compressor and high-temperature turbine is critical for high performance. This paper relates to the use of extracted steam from a steam turbine as a coolant in a combined cycle to enhance material selection and to control expansion in such a manner that the cooling process increases combined-cycle efficiency, gas turbine output, and steam turbine output.


2011 ◽  
Vol 71-78 ◽  
pp. 1765-1768
Author(s):  
Hong Mei Zhu ◽  
Heng Sun ◽  
Tian Quan Pan

A theoretical study of the performance of a CCHP system using natural gas as fuel which consists of gas turbine-steam turbine combined cycle, absorption refrigeration unit and exhaust heat boiler under variable loads was carried out. Two methods to adjust the electric and cooling loads are employed here. One method is to increase the outlet pressure of the steam turbine in the Rankine cycle. Another way is to change the air coefficient of the gas turbine. The calculation results show that the first method can obtain higher energy efficient and is the preferred method. The second way can be employed in case that further more cooling is required.


Author(s):  
Stéphanie Hoffmann ◽  
Michael Bartlett ◽  
Matthias Finkenrath ◽  
Andrei Evulet ◽  
Tord Peter Ursin

This paper presents the results of an evaluation of advanced combined cycle gas turbine plants with precombustion capture of CO2 from natural gas. In particular, the designs are carried out with the objectives of high efficiency, low capital cost, and low emissions of carbon dioxide to the atmosphere. The novel cycles introduced in this paper are comprised of a high-pressure syngas generation island, in which an air-blown partial oxidation reformer is used to generate syngas from natural gas, and a power island, in which a CO2-lean syngas is burnt in a large frame machine. In order to reduce the efficiency penalty of natural gas reforming, a significant effort is spent evaluating and optimizing alternatives to recover the heat released during the process. CO2 is removed from the shifted syngas using either CO2 absorbing solvents or a CO2 membrane. CO2 separation membranes, in particular, have the potential for considerable cost or energy savings compared with conventional solvent-based separation and benefit from the high-pressure level of the syngas generation island. A feasibility analysis and a cycle performance evaluation are carried out for large frame gas turbines such as the 9FB. Both short-term and long-term solutions have been investigated. An analysis of the cost of CO2 avoided is presented, including an evaluation of the cost of modifying the combined cycle due to CO2 separation. The paper describes a power plant reaching the performance targets of 50% net cycle efficiency and 80% CO2 capture, as well as the cost target of 30$ per ton of CO2 avoided (2006 Q1 basis). This paper indicates a development path to this power plant that minimizes technical risks by incremental implementation of new technology.


2006 ◽  
Vol 129 (3) ◽  
pp. 637-647 ◽  
Author(s):  
Mun Roy Yap ◽  
Ting Wang

Biomass can be converted to energy via direct combustion or thermochemical conversion to liquid or gas fuels. This study focuses on burning producer gases derived from gasifying biomass wastes to produce power. Since the producer gases are usually of low calorific values (LCV), power plant performance under various operating conditions has not yet been proven. In this study, system performance calculations are conducted for 5MWe power plants. The power plants considered include simple gas turbine systems, steam turbine systems, combined cycle systems, and steam injection gas turbine systems using the producer gas with low calorific values at approximately 30% and 15% of the natural gas heating value (on a mass basis). The LCV fuels are shown to impose high compressor back pressure and produce increased power output due to increased fuel flow. Turbine nozzle throat area is adjusted to accommodate additional fuel flows to allow the compressor to operate within safety margin. The best performance occurs when the designed pressure ratio is maintained by widening nozzle openings, even though the turbine inlet pressure is reduced under this adjustment. Power augmentations under four different ambient conditions are calculated by employing gas turbine inlet fog cooling. Comparison between inlet fog cooling and steam injection using the same amount of water mass flow indicates that steam injection is less effective than inlet fog cooling in augmenting power output. Maximizing steam injection, at the expense of supplying the steam to the steam turbine, significantly reduces both the efficiency and the output power of the combined cycle. This study indicates that the performance of gas turbine and combined cycle systems fueled by the LCV fuels could be very different from the familiar behavior of natural gas fired systems. Care must be taken if on-shelf gas turbines are modified to burn LCV fuels.


Author(s):  
James DiCampli

Combined heat and power (CHP), is an application that utilizes the exhaust heat generated from a gas turbine and converts it into a useful energy source for heating & cooling, or additional electric generation in combined cycle configurations. Compared to simple-cycle plants with no heat recovery, CHP plants emit fewer greenhouse gasses and other emissions, while generating significantly more useful energy per unit of fuel consumed. Clean plants are easier to permit, build and operate. Because of these advantages, Aeroderivative gas turbines will be a major part of global CHP growth, particularly in China. In order to improve energy efficiency and reduce CO2 emissions, China is working to build ∼1000 new plants of Natural Gas Distributed Energy System (NG-DES) in the next five years. These plants will replace conventional coal-fired plants with combined cooling, heating and power (CCHP) systems. China power segments require an extensive steam supply for cooling, heating and industrial process steam demands, as well as higher peak loads due to high population densities and manufacturing growth rates. GE Energy Aero recently entered the CCHP segment in China, and supported the promotion of codes and standards for NG-DES policy, and is developing optimized CCHP gas turbine packages to meet requirements. This paper reviews those policies and requirements, and presents technical case studies on CCHP applications. Appendix B highlights China’s draft “Guidance Opinions on Developing Natural-Gas Distributed Energy.”


1979 ◽  
Author(s):  
L. F. Fougere ◽  
H. G. Stewart ◽  
J. Bell

Citizens Utilities Company’s Kauai Electric Division is the electric utility on the Island of Kauai, fourth largest and westernmost as well as northernmost of the Hawaiian Islands. As a result of growing load requirements, additional generating capacity was required that would afford a high level of reliability and operating flexibility and good fuel economy at reasonable capital investment. To meet these requirements, a combined cycle arrangement was completed in 1978 utilizing one existing gas turbine-generator and one new gas turbine-generator, both exhausting to a new heat recovery steam generator which supplies steam to an existing steam turbine-generator. Damper controlled ducting directs exhaust gas from either gas turbine, one at a time, through the heat recovery steam generator. The existing oil-fired steam boiler remains available to power the steam turbine-generator independently or in parallel with the heat recovery steam generator. The gas turbines can operate either in simple cycle as peaking units or in combined cycle, one at a time, as base load units. This arrangement provides excellent operating reliability and flexibility, and the most favorable economics of all generating arrangements for the service required.


Vestnik IGEU ◽  
2020 ◽  
pp. 11-21
Author(s):  
I.K. Muravev ◽  
A.B. Korovkin ◽  
R.A. Shitov

Gas turbines are actively used as a part of combined-cycle power units having less impact on the environ-ment than installations operating on other types of fuel. However, their emissions contain harmful carbon compounds and nitrogen oxides. Some research studies considered the effect of emissions upon changes in the coefficient of excess air. At the same time, no attention was paid to the influence of other operational parameters and technological limitations associated with the safe operation of combined-cycle CCGT equipment, and no assessment was made of the impact of climatic factors on environmental indicators. Thus, it is important to conduct separate studies to assess the influence of regime and climatic factors on the stability of the combustion process in the combustion chamber of a gas turbine, on the environmental performance of the installation and the compliance of these indicators with the standards. The research used data from the control system archive, and a simulation model was developed in the SimInTech environment. The following assumptions are made in the model: the fuel composition does not change and it enters the single combustion zone without separation into the pilot and central zones of the combustion chamber. The methodology for calculating emissions is reduced to dividing their volume into NO and NO2 due to the transformation of nitrogen oxides in the air. Subsequently, the values of the total concentration are recalculated to a single NOx value. A simulation model for calculating emissions has been obtained. The effect of excess air on nitrogen oxide emissions considering the technological zones of gas turbines of outdoor air temperature (To.a) from –20 to +30 оС and the power from 48 to 110 MW has been assessed. It has been shown that near the nominal load the maximum NOx emission are observed. In general, the results obtained indicate that the requirements for NOx emission standards are met in the entire operating range of gas turbine load changes. However, the reserve of a possible deviation of emissions to a critical level is only 10 %. The verification of the developed model is based on operational trends. The recommendations on operational management have been formulated for power unit operators in order to maintain an ac-ceptable level of NOx emissions.


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
Joa˜o Roberto Barbosa ◽  
Luiz Augusto Horta Nogueira ◽  
Electo E. Silva Lora

The operational rules for the electricity markets in Latin America are changing at the same time that the electricity power plants are being subjected to stronger environmental restrictions, fierce competition and free market rules. This is forcing the conventional power plants owners to evaluate the operation of their power plants. Those thermal power plants were built between the 1960’s and the 1990’s. They are old and inefficient, therefore generating expensive electricity and polluting the environment. This study presents the repowering of thermal power plants based on the analysis of three basic concepts: the thermal configuration of the different technological solutions, the costs of the generated electricity and the environmental impact produced by the decrease of the pollutants generated during the electricity production. The case study for the present paper is an Ecuadorian 73 MWe power output steam power plant erected at the end of the 1970’s and has been operating continuously for over 30 years. Six repowering options are studied, focusing the increase of the installed capacity and thermal efficiency on the baseline case. Numerical simulations the seven thermal power plants are evaluated as follows: A. Modified Rankine cycle (73 MWe) with superheating and regeneration, one conventional boiler burning fuel oil and one old steam turbine. B. Fully-fired combined cycle (240 MWe) with two gas turbines burning natural gas, one recuperative boiler and one old steam turbine. C. Fully-fired combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. D. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler and one old steam turbine. The gas turbine has water injection in the combustion chamber. E. Fully-fired combined cycle (242 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners and one old steam turbine. The gas turbine has steam injection in the combustion chamber. F. Hybrid combined cycle (235 MWe) with one gas turbine burning natural gas, one recuperative boiler with supplementary burners, one old steam boiler burning natural gas and one old steam turbine. G. Hybrid combined cycle (235 MWe) with one gas turbine burning diesel fuel, one recuperative boiler with supplementary burners, one old steam boiler burning fuel oil and one old steam turbine. All the repowering models show higher efficiency when compared with the Rankine cycle [2, 5]. The thermal cycle efficiency is improved from 28% to 50%. The generated electricity costs are reduced to about 50% when the old power plant is converted to a combined cycle one. When a Rankine cycle power plant burning fuel oil is modified to combined cycle burning natural gas, the CO2 specific emissions by kWh are reduced by about 40%. It is concluded that upgrading older thermal power plants is often a cost-effective method for increasing the power output, improving efficiency and reducing emissions [2, 7].


Sign in / Sign up

Export Citation Format

Share Document