Concrete Beams Reinforced with GFRP Plates

2017 ◽  
Vol 747 ◽  
pp. 220-225
Author(s):  
Alberto Pedro Busnelli ◽  
Ruben Edgardo López ◽  
Jorge Carlos Adue

This is the presentation of the research carried out by the Faculty of Engineering at Universidad Nacional de Rosario on the use of pultruded Glass Fiber Reinforced Polymer (GFRP) plates to increase the flexural strength of reinforced concrete beams.Pultruded plates are the type of elements made of composite materials which are most widely used for this kind of strengthening. Although around the world the material used for these plates is carbon fibers, its high cost prevents its widespread use in our country.One of the aims of our research program is, precisely, to verify whether it is possible to substitute such plates for significantly cheaper glass fiber elements manufactured in Argentina. The test results have proved that this alternative is feasible.What's more, the greater thickness of the glass fiber plates allows the use of additional anchor bolts. These bolts provide the system with post-critical resistance and ductility-characteristics which are absolutely necessary, for example, in structures in seismic areas.

2021 ◽  
Vol 9 (1) ◽  
pp. 72-78
Author(s):  
Osama Daoud ◽  
Ahmed Fadul

The behavior and shear strength of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars was investigated. Total of six reinforced concrete beams without stirrups were constructed and tested up to failure. The beams measured 1400 mm long, 150 mm wide and 300 mm deep and were tested in two-points bending with constant shear span 350 mm in all tested beams, and shear span to depth ratio a/d 1.37. The test variable was the reinforcement ratio. The test beams included three beams designed as tension control (T.C) with GFRP bars, three beams designed as compression control (C.C) with GFRP bars. The test results were compared with predictions provided by ACI 440.1R-15 design guideline and proposed equations in the literature. The test results indicated that the relatively low modulus of elasticity of FRP bars resulted in reducing shear strength. In addition, shear strength provided by ACI 440.1R-15 guideline underestimate shear strength capacity in which proposed equations in the literature had given better prediction than ACI 440.1R-15. The failure mode in T.C beams is diagonal tension by bond failure not by rupture of FRP and C.C beams is shear compression by crushing of the web in extreme fiber.  


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
S.-K. Lee ◽  
S.-Y. Yoo ◽  
C.-G. Park

This study evaluated the performance of a hybrid panel that can overcome the current problem of corrosion of the steel panels of improved movable weirs when they are exposed to a sulfate and calcium chloride environment such as sea water. A hybrid panel with glass fiber-reinforced polymer (GFRP) layers on both sides of a steel panel means that the central panel is not exposed to the external elements, which can avoid corrosion problems. In this study, to maximize the hybrid panel’s strength and durability, the moisture absorption characteristics and the durability in an accelerated environment were evaluated. The test results were considered to indicate no durability issues as the final absorption ratio was approximately 2.0% or less in all environments. Also, from the accelerated deterioration test results when the steel panel processed by sand blasting was applied in all accelerated deterioration environments, it satisfied the residual strength level of 65% or more. However, in the case without surface processing, upon exposure to MgSO4 solution, it did not satisfy the standard residual strength level of 65%. These results show that sand blasting on the surface of a steel panel is adequate for hybrid panels for improved movable weirs.


Sign in / Sign up

Export Citation Format

Share Document