Deformation Mechanisms of Single Crystals and Bicrystals Subjected to Equal-Channel Angular Pressing - Review

2009 ◽  
Vol 633-634 ◽  
pp. 511-525
Author(s):  
Wei Zhong Han ◽  
Shou Xin Li ◽  
Shi Ding Wu ◽  
Zhe Feng Zhang

The deformation mechanisms of various kinds of single crystals and bicrystals during the process of equal channel angular pressing (ECAP) have been paid more attention world wide. This paper reviews the recent progresses in the understanding of the deformation mechanisms of single crystals and bicrystals subjected to one-pass ECAP, and discusses the effect of initial crystallographic orientation and grain boundary on the microstructural evolution of these crystals. Based on those experimental results and analysis, it is suggested that in addition to the shear deformation along the intersection plane (IP) of ECAP die, the shear along the normal of IP also plays an important role in affecting the microstructural evolution and deformation mechanisms of these single crystals and bicrystals.

2006 ◽  
Vol 503-504 ◽  
pp. 799-804 ◽  
Author(s):  
Hiroyuki Miyamoto ◽  
J. Fushimi ◽  
Takura Mimaki ◽  
Alexei Vinogradov ◽  
Satoshi Hashimoto

Copper single crystals were subjected to equal-channel angular pressing (ECAP) via the so-called route A and Bc, in order to examine the influence of initial crystallographic orientation and processing route on microstructure development and grain fragmentation. Microstructural changes were examined by transmission electron microscopy (TEM). The pressing via the route Bc resulted in finer microstructure for all orientations in terms of grain size, equiaxiality and orientation scattering after four passes. Effect of initial crystallographic orientation on the grain refinement was also recognized, and it might be attributed to heterogeneous deformation such as shear bands, whose formation is strongly orientation dependent. After eight passes, however, the effect of processing route and initial orientation cannot be recognized.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 654
Author(s):  
Ryosuke Matsutani ◽  
Nobuo Nakada ◽  
Susumu Onaka

Ultra-fine-grained (UFG) Cu shows little total elongation in tensile tests because simple shear deformation is concentrated in narrow regions during the initial stage of plastic deformation. Here, we attempted to improve the total elongation of UFG Cu obtained by equal-channel angular pressing. By making shallow dents on the side surfaces of the plate-like specimens, this induced pure shear deformation and increased their total elongation. During the tensile tests, we observed the overall and local deformation of the dented and undented UFG Cu specimens. Using three-dimensional digital image correlation, we found that the dented specimens showed suppression of thickness reduction and delay in fracture by enhancement of pure shear deformation. However, the dented and undented specimens had the same ultimate tensile strength. These results provide us a new concept to increase total elongation of UFG materials.


2015 ◽  
Vol 1101 ◽  
pp. 93-98
Author(s):  
Yue Shen ◽  
Chuan Ting Ren ◽  
Guo Quan Zhang ◽  
Ming Xie ◽  
Ming Wen ◽  
...  

The shear deformation behavior of the course-grained Cu-8wt%Ag alloy processed by one pass of equal channel angular pressing (ECAP) was revealed through the metallurgical microscope and the scanning electron microscope. Through the macro-level and micro-level synthesis analysis, it is confirmed that there are two shear deformation during the ECAP processing: the one along the intersection plane (IP) and the other along the vertical plane to the IP. And it is estimated that theoretical ranges of two shear angles are-32°<θ1<0° and 43°<θ2<58° respectively. Finally, it is also proved that the evolution of the shear bands is affected by the parallel and vertical shear to the IP of the ECAP die, and that, besides the shear along the IP, the shear along the vertical plane to the IP also plays an important role during the plastic deformation.


Sign in / Sign up

Export Citation Format

Share Document