Composite Materials Based on Plasma Treated Basalt Fibers for Heavy-Duty Concrete Products

2020 ◽  
Vol 299 ◽  
pp. 175-180
Author(s):  
Gulnara I. Amerkhanova ◽  
Aleksey I. Khatsrinov ◽  
Lyubov A. Zenitova

The paper investigates the effect of plasma treatment of basalt fiber on its wettability, which is determined by the ability to absorb water. As the treatment time increases the wettability becomes higher, up to 10 minutes. The wettability-treatment power dependence passes through a maximum. The highest value is observed at a treatment power of 0.6 kW both on the day of treatment and after a 5-day rest period. A further growth in power not only does not increase this value, but in fact decreases it. The retreatment after a 5-day curing period yields lower results, but remains sufficiently high. The highest wettability is observed at a treatment power of 0.6 kW, gas flow rate of 0.04 g/s, chamber pressure of 20 Pa, air/argon mixture (1:1) as plasma support gas. The strength of concrete specimens BST V40 P2 was tested with two treatment modes: in mode 1 the treatment time was 10 minutes, the treatment power was 1.5 kW; and in mode 2 the treatment time was 5 minutes, the treatment power was 0.6 kW, with the addition of plasma treated basalt fiber (0.5 and 3 mass percent). Concrete has the highest strength when basalt fiber (3 mass percent) is subjected to plasma treatment in mode 2. In addition, the strength increases by 18 mass percent in comparison with the reference.

2020 ◽  
Vol 63 (7) ◽  
pp. 60-65
Author(s):  
Gulnara I. Amerkhanova ◽  
◽  
Alexey I. Khatsrinov ◽  
Lyubov A. Zenitova ◽  
◽  
...  

The paper investigates the effect of plasma treatment of basalt fiber on its hydrophilic behavior, which was estimated by contact angle. The pre-chopped basalt fiber was put in a soft polyethylene container to prevent fiber particles from being carried away by a flow of plasma gas, and to protect outlet gas ducts against clogging. It was evaluated what effect the plasma modification had on the strength properties of BST V40 P2 concrete. As the treatment time increases the contact angle becomes higher until treatment time reaches 10 minutes. The contact angle-treatment power dependence passes through a maximum. The highest value has been observed at a treatment power of 0.6 kW both on the day of treatment and after a 5-day rest period. The wettability of basalt fiber after 5 days of exposure after the first wetting leads to lower results, but remains at a fairly high level. The retreatment after a 5-day curing period yields lower results, but the level remains sufficiently high. The highest contact angle has been observed at a treatment power of 0.6 kW, gas flow rate (G) of 0.04 g/s, chamber pressure (P) of 20 Pa, with air/argon mixture (1:1) as plasma gas. Were tested samples of concrete BST V 40 P 2 with the addition of plasma-treated basalt fiber in the amount of 0.5 and 3% of the mass. on the strength index under two modes of basalt fiber processing: in mode 1 the treatment time was 10 minutes, the treatment power was 1.5 kW; and in mode 2 the treatment time was 5 minutes, the treatment power was 0.6 kW, with the addition of plasma treated basalt fiber (0.5 and 3 mass percent). It was found that the plasma treatment of basalt fiber before chopping gave concrete a higher strength than plasma treatment followed by chopping. Concrete has the highest strength when basalt fiber (3 mass percent) is subjected to plasma treatment in mode 2. Furthermore, the strength increased by 23 mass percent in comparison with the reference sample.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1293
Author(s):  
Maria Rosaria Ricciardi ◽  
Ilaria Papa ◽  
Giuseppe Coppola ◽  
Valentina Lopresto ◽  
Lucia Sansone ◽  
...  

Hydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. In this paper, the effect of a one-step sulfur hexafluoride (SF6) plasma treatment upon the low velocity impact behavior of basalt/epoxy composites has been investigated by using several characterization techniques. A capacitive coupled radiofrequency plasma system was used for the plasma surface treatment of basalt/epoxy composites, and suitable surface treatment conditions were experimentally investigated with respect to gas flow rate, chamber pressure, power intensity, and surface treatment time by measuring the water droplet contact angle of treated specimens. The contact angle measurements showed that treating with SF6 plasma would increase the hydrophobicity of basalt/epoxy composites; moreover, the impact results obtained on reinforced epoxy basalt fiber showed damage in a confined area and higher impact resistance for plasma-treated basalt systems.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 580
Author(s):  
Chao-Ching Chiang ◽  
Philip Nathaniel Immanuel ◽  
Yi-Hsiung Chiu ◽  
Song-Jeng Huang

In this work we report on a rapid, easy-to-operate, lossless, room temperature heterogeneous H2O plasma treatment process for the bonding of poly(methyl methacrylate) (PMMA) and double-sided polished (DSP) silicon substrates by for utilization in sandwich structured microfluidic devices. The heterogeneous bonding of the sandwich structure produced by the H2O plasma is analyzed, and the effect of heterogeneous bonding of free radicals and high charge electrons (e−) in the formed plasma which causes a passivation phenomenon during the bonding process investigated. The PMMA and silicon surface treatments were performed at a constant radio frequency (RF) power and H2O flow rate. Changing plasma treatment time and powers for both processes were investigated during the experiments. The gas flow rate was controlled to cause ionization of plasma and the dissociation of water vapor from hydrogen (H) atoms and hydroxyl (OH) bonds, as confirmed by optical emission spectroscopy (OES). The OES results show the relative intensity peaks emitted by the OH radicals, H and oxygen (O). The free energy is proportional to the plasma treatment power and gas flow rate with H bonds forming between the adsorbed H2O and OH groups. The gas density generated saturated bonds at the interface, and the discharge energy that strengthened the OH-e− bonds. This method provides an ideal heterogeneous bonding technique which can be used to manufacture new types of microfluidic devices.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 339 ◽  
Author(s):  
Yumeng Xu ◽  
Xin Gao ◽  
Xiaolei Zhang ◽  
Zhongliang Qiao ◽  
Jing Zhang ◽  
...  

The passivation effects of the SF6 plasma on a GaAs surface has been investigated by using the radio frequency (RF) plasma method. The RF’s power, chamber pressure, and plasma treatment time are optimized by photoluminescence (PL), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The PL intensity of passivated GaAs samples is about 1.8 times higher than those which are untreated. The oxide traps and As-As dimers can be removed effectively by using SF6 plasma treatment, and Ga-F can form on the surface of GaAs. It has also been found that the stability of the passivated GaAs surface can be enhanced by depositing SiO2 films onto the GaAs surface. These indicate that the passivation of GaAs surfaces can be achieved by using SF6 plasma treatment.


2008 ◽  
Vol 55-57 ◽  
pp. 753-756 ◽  
Author(s):  
R. Nakhowong ◽  
Toemsak Srikhirin ◽  
Tanakorn Osotchan

The surface of polystyrene (PS) thin films in argon plasma was modified to study the hydrophilicity properties. An inductively coupled plasma (ICP) system was used to generate the argon plasma. In the experiment, the effect of RF power levels, gas flow rate and treatment time was investigated. The surface morphology of PS films was examined by the atomic force microscopy (AFM), also the contact angle goniometry was used for measuring the wettability of PS films before and after plasma treatment. After the plasma treatment, AFM images of PS revealed the increasing of the surface roughness as increasing the power levels and treatment times. Moreover, after treated with argon plasma, the contact angles of polystyrene films also decrease where the power levels and treatment times were increased. It is clear that the effects of power levels and treatment time improve the wettability of PS films. It can also be observed that by placing the sample in air after plasma treatment, the contact angle gradually increases probably due to moisture absorption in the PS films.


2020 ◽  
Vol 85 (6) ◽  
pp. 831-844
Author(s):  
Tatjana Mitrovic ◽  
Mirjana Ristic ◽  
Aleksandra Peric-Grujic ◽  
Sasa Lazovic

In this paper, the results of decolourisation of Reactive Orange 16 (RO 16), Reactive Blue 19 (RB 19) and Direct Red 28 (DR 28) textile dyes in aqueous solution by plasma needle are presented. Treatment time, feed gas flow rate (1, 4 and 8 dm3 min-1) and gas composition (Ar, Ar/O2) were optimized to achieve the best performance of the plasma treatment. An artificial neural network (ANN) was used for the prediction of parameters relevant for the decolourisation outcome. It was found that more than 95 % decolourisation could be achieved for all three dyes after plasma treatment, although the decolourisation of DR 28 was much slower than those of the other two dyes, which could be explained by the complexity of its molecular structure. It was concluded that the oxidation was very dependent on all three mentioned parameters. The ANN predicted the treatment time as the crucial factor for decolourisation performance of RO 16 and DR 28, while the Ar flow rate was the most relevant for RB 19 decolourisation. The obtained results suggest that the plasma needle is a promising tool for the oxidation of organic pollutants and that an ANN could be used for optimization of the treatment parameters to achieve high removal rates.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3228
Author(s):  
Shama Parveen ◽  
Sohel Rana ◽  
Parikshit Goswami

The growing interest in wool fibres as an eco-friendly and sustainable material for diverse industrial applications requires an enhancement of their functional performance. To address this, wool fabrics were treated in the present research with low-pressure hexafluoroethane (C2F6) plasma to impart superhydrophobicity and improve their abrasion resistance. Unscoured and scoured wool fabrics were treated with C2F6 while varying plasma power (80 W and 150 W), gas flow rate (12 sccm and 50 sccm) and treatment time (6 min and 20 min), and the effect of plasma parameters on the abrasion resistance, water contact angle and dyeing behaviour of the wool fabrics was studied. Martindale abrasion testing showed that the surface abrasion of the wool fabrics increased with the number of abrasion cycles, and the samples treated with 150 W, 20 min, 12 sccm showed superior abrasion resistance. The scoured wool fabrics showed a contact angle of ~124°, which was stable for only 4 min 40 s, whereas the plasma-treated samples showed a stable contact angle of over 150°, exhibiting a stable superhydrophobic behaviour. The C2F6 plasma treatment also significantly reduced the exhaustion of an acid dye by wool fabrics. The EDX study confirmed the deposition of fluorine-containing elements on the wool fabrics significantly altering their properties.


2021 ◽  
Vol 16 ◽  
pp. 155892502110438
Author(s):  
Zixuan Liu ◽  
Keyi Wang ◽  
Huchen Wang ◽  
Letian Li ◽  
Huan Chen ◽  
...  

This study explored the influence of low temperature glow discharged argon (Ar) plasma on interfacial performance and impact resistance of ultra-high molecular weight polyethylene (UHMWPE) inter-ply hybrid composites. The composites were composed of UHMWPE and meta-aramid plain woven laminates with shear thickening fluid (STF). Water contact angle and drop-weight resistance of the composites with various Ar plasma treatment parameters were tested to investigate the interfacial performance and impact properties of the composites. The tested treatment parameters of this study included treating time, treating power, and gas flow rate. It was found that the best interfacial adhesion of UHMWPE and the impact resistance of the composites was realized at the plasma treatment power of 100 W, treatment time of 150 s, and gas flow rate of 4 sccm. In the follow-up research, this study conducted ballistic test to further explore the bulletproof effect and application prospect of this material.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1321
Author(s):  
Cheng-Yun Peng ◽  
Chia-Hung Dylan Tsai

Droplet manipulation is important in the fields of engineering, biology, chemistry, and medicine. Many techniques, such as electrowetting and magnetic actuation, have been developed for droplet manipulation. However, the fabrication of the manipulation platform often takes a long time and requires well-trained skills. Here we proposed a novel method that can directly generate and manipulate droplets on a polymeric surface using a universal plasma jet. One of its greatest advantages is that the jet can tremendously reduce the time for the platform fabrication while it can still perform stable droplet manipulation with controllable droplet size and motion. There are two steps for the proposed method. First, the universal plasma jet is set in plasma mode for modifying the manipulation path for droplets. Second, the jet is switched to air-jet mode for droplet generation and manipulation. The jetted air separates and pushes droplets along the plasma-treated path for droplet generation and manipulation. According to the experimental results, the size of the droplet can be controlled by the treatment time in the first step, i.e., a shorter treatment time of plasma results in a smaller size of the droplet, and vice versa. The largest and the smallest sizes of the generated droplets in the results are about 6 µL and 0.1 µL, respectively. Infrared spectra of absorption on the PDMS surfaces with and without the plasma treatment are investigated by Fourier-transform infrared spectroscopy. Tests of generating and mixing two droplets on a PDMS surface are successfully achieved. The aging effect of plasma treatment for the proposed method is also discussed. The proposed method provides a simple, fast, and low-cost way to generate and manipulate droplets on a polymeric surface. The method is expected to be applied to droplet-based cell culture by manipulating droplets encapsulating living cells and towards wall-less scaffolds on a polymeric surface.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1300-1305
Author(s):  
KI-HO SONG ◽  
HYUN-YONG LEE ◽  
HOE-YOUNG YANG ◽  
SUNG-WON KIM ◽  
JAE-HEE SEO ◽  
...  

Two-dimensional photonic crystals (2D-PCs) with Ge 2 Sb 2 Te 5 ( GST ) nanohole arrays were prepared by the nanosphere lithography (NSL) process. A primary factor of PCs is that the refractive index (n) and the n-modulation can be realized by using the GST films, which exhibit a reversible phase transformation between amorphous and crystalline states by laser illumination. The polystyrene (PS) spheres with a diameter of 500 nm were spin-coated on Si substrate and subsequently reduced by O 2-plasma treatment. The reduced spheres were utilized as a lift-off mask of the NSL process and their size and separation could be precisely controlled. Amorphous GST films were thermally evaporated and then the reduced PS spheres were removed. The fabricated GST nanohole arrays were observed by SEM and AFM. The nanohole diameters are nearly linearly reduced with increasing plasma-treatment time (t). The reduction rate (δ) for the conditions of this work was evaluated to be ~ 0.92 nm/s. The period (Λ) and filling factor (η) of PCs are structure parameters that determine their photonic bandgaps (PBGs). η-modulation can be easily achieved via a control of t and the Λ can be also modulated by the use of PS spheres with specific diameter. In addition, the PBGs for the fabricated GST 2 D PC were calculated by considering the amorphous and crystalline states of GST .


Sign in / Sign up

Export Citation Format

Share Document