A Numerical Analysis of Bidirectional Ducted Tidal Turbines in Yawed Flow

2013 ◽  
Vol 47 (4) ◽  
pp. 23-35 ◽  
Author(s):  
Clarissa S.K. Belloni ◽  
Richard H.J. Willden ◽  
Guy T. Houlsby

AbstractThe paper presents a computational study of ducted bidirectional tidal turbines using three-dimensional Reynolds-averaged Navier-Stokes simulations. We model the outer duct as a solid body and use a porous disc to represent the turbine rotor, a simplification that captures changes in linear momentum and thus the primary interaction of the turbine with the flow through and around the duct while greatly reducing computational complexity. The duct is modeled using linearly converging and diverging sections and a short straight pipe at the duct throat.We investigate the performance of bare and ducted turbines and relate these to the flows through the devices. For the ducted turbine under investigation, we show a substantial decrease in power generated relative to a bare turbine of diameter equal to the external diameter of the duct. In the case of ducted turbines with concave duct exteriors, we observe two external flow regimes with increasing turbine thrust: nozzle-contoured and separation dominated regimes. Maximum power occurs within the separation dominated flow regime due to the additional channel blockage created by the external separation.The ducts of ducted tidal turbines have been argued to provide a flow straightening effect, allowing modest yaw angles to be readily accommodated. We present a comparison of bare and ducted turbine performance in yawed flow. We show that while bare turbine performance decreases in yawed flow, ducted turbine performance increases. This is due to both a flow straightening effect and also an increase in effective blockage as ducts present greater projected frontal area when approached nonaxially.

2005 ◽  
Vol 129 (2) ◽  
pp. 303-310 ◽  
Author(s):  
Kevin Reid ◽  
John Denton ◽  
Graham Pullan ◽  
Eric Curtis ◽  
John Longley

Individual nozzle guide vanes (NGV’s) in modern aeroengines are often cast as a single piece with integral hub and casing endwalls. When in operation, there is a leakage flow through the chord-wise interplatform gaps. An investigation into the effect of this leakage flow on turbine performance is presented. Efficiency measurements and NGV exit area traverse data from a low-speed research turbine are reported. Tests show that this leakage flow can have a significant impact on turbine performance, but that below a threshold leakage fraction this penalty does not rise with increasing leakage flow rate. The effect of various seal clearances are also investigated. Results from steady-state simulations using a three-dimensional multiblock Reynolds-averaged Navier-Stokes solver are presented with particular emphasis paid to the physics of the mainstream/leakage interaction and the loss generation.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Massimiliano Maritano ◽  
Stefano Cecchi

In this work a numerical investigation of a four stage heavy-duty gas turbine is presented. Fully three-dimensional, multistage, Navier-Stokes analyses are carried out to predict the overall turbine performance. Coolant injections, cavity purge flows, and leakage flows are included in the turbine modeling by means of suitable wall boundary conditions. The main objective is the evaluation of the impact of gas modeling on the prediction of the stage and turbine performance parameters. To this end, four different gas models were used: three models are based on the perfect gas assumption with different values of constant cp, and the fourth is a real gas model which accounts for thermodynamic gas properties variations with temperature and mean fuel∕air ratio distribution in the through-flow direction. For the real gas computations, a numerical model is used which is based on the use of gas property tables, and exploits a local fitting of gas data to compute thermodynamic properties. Experimental measurements are available for comparison purposes in terms of static pressure values at the inlet∕outlet of each row and total temperature at the turbine exit.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


Author(s):  
W. R. Briley ◽  
D. V. Roscoe ◽  
H. J. Gibeling ◽  
R. C. Buggeln ◽  
J. S. Sabnis ◽  
...  

Three-dimensional solutions of the ensemble-averaged Navier-Stokes equations have been computed for a high-turning turbine rotor passage, both with and without tip clearance effects. The geometry is Pratt & Whitney’s preliminary design for the Generic Gas Generator Turbine (GGGT), having an axial chord of 0.5 inch and turning angle of about 160 degrees. The solutions match the design Reynolds number of 3x 106/inch and design inflow/outflow distributions of flow quantities. The grid contains 627,000 points, including 20 radial points in the clearance gap of 0.015 inch, and has a minimum spacing of 10−4 inch adjacent to all surfaces. The solutions account for relative motion of the blade and shroud surfaces and include a backstep on the shroud. Computed results are presented which show the general flow behavior, especially near the tip clearance and backstep regions. The results are generally consistent with experimental observations for other geometries having thinner blades and smaller turning angles. The leakage flow includes some fluid originally in the freestream at 91 percent span. Downstream, the leakage flow behaves as a wall jet directed at 100 degrees to the main stream, with total pressure and temperature higher than the freestream. Radial distributions of circumferentially-averaged flow quantities are compared for solutions with and without tip leakage flow. Two-dimensional solutions are also presented for the mid-span blade geometry for design and off-design inflow angles.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Wen Yao Lee ◽  
William N. Dawes ◽  
John D. Coull

Abstract Casting deviations introduce geometric variability that impacts the aerodynamic performance of turbomachinery. These effects are studied for a high-pressure turbine rotor blade from a modern aero-engine. A sample of 197 blades were measured using structured-light three-dimensional scanning, and the performance of each blade is quantified using Reynolds-averaged Navier–Stokes (RANS) simulations. Casting variation is typically managed by applying geometric tolerances to determine the suitability of a component for service. The analysis demonstrates that this approach may not be optimal since it does not necessarily align with performance, in particular the capacity and efficiency. Alternatively, functional acceptance based on the predicted performance of each blade removes the uncertainty associated with geometric tolerancing and gives better performance control. Building on these findings, the paper proposes a method to set the orientation of the fir-tree, which is machined after casting. By customizing the alignment of each blade, performance variability and scrap rates can be significantly reduced. The method uses predictions of performance to reorient the castings to compensate for manufacturing-induced errors, without changing the design-intent blade geometry and with minimal changes to the manufacturing facility.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750021 ◽  
Author(s):  
A. Niktash ◽  
B. P. Huynh

A windcatcher is a structure for providing natural ventilation using wind power; it is usually fitted on the roof of a building to exhaust the inside stale air to the outside and supplies the outside fresh air into the building interior space working by pressure difference between outside and inside of the building. In this paper, the behavior of free wind flow through a three-dimensional room fitted with a centered position two-canal bottom shape windcatcher model is investigated numerically, using a commercial computational fluid dynamics (CFD) software package and LES (Large Eddy Simulation) CFD method. The results have been compared with the obtained results for the same model but using RANS (Reynolds Averaged Navier–Stokes) CFD method. The model with its surrounded space has been considered in both method. It is found that the achieved results for the model from LES method are in good agreement with RANS method’s results for the same model.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Budimir Rosic ◽  
John D. Denton ◽  
Eric M. Curtis

Imperfections in the turbine annulus geometry, caused by the presence of the shroud and associated cavity, have a significant influence on the aerodynamics of the main passage flow path. In this paper, the datum shroud geometry, representative of steam turbine industrial practice, was systematically varied and numerically tested. The study was carried out using a three-dimensional multiblock solver, which modeled the flow in a 1.5 stage turbine. The following geometry parameters were varied: inlet and exit cavity length, shroud overhang upstream of the rotor leading edge and downstream of the trailing edge, shroud thickness for fixed casing geometry and shroud cavity depth, and shroud cavity depth for the fixed shroud thickness. The aim of this study was to investigate the influence of the above geometric modifications on mainstream aerodynamics and to obtain a map of the possible turbine efficiency changes caused by different shroud geometries. The paper then focuses on the influence of different leakage flow fractions on the mainstream aerodynamics. This work highlighted the main mechanisms through which leakage flow affects the mainstream flow and how the two interact for different geometrical variations and leakage flow mass fractions.


Author(s):  
T. I-P. Shih ◽  
Y.-L. Lin ◽  
M. K. Chyu ◽  
S. Gogineni

Computations were performed to study the three-dimensional flow and heat transfer on a flat plate cooled by jets, injected from a plenum through one row of film-cooling holes in which each hole is fitted with a strut in the form of a circular cylinder. Three different configurations of the film-cooling hole were investigated: without strut, with streamwise strut, and with spanwise strut. For all configurations, the film-cooling holes are inclined at 35°, and the coolant-to-mainflow density and mass-flux ratios are 1.6 and 0.5, respectively. The focus of this study is to understand how struts in holes affect film cooling jets and their interactions with the mainflow in forming a protective layer of cooler fluid over the plate. This computational study is based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy. Effects of turbulence was modeled by a low Reynolds number k-ω closure known as the shear-stress-transport (SST) model. Solutions were generated by a cell-centered finite-volume method that uses third-order accurate flux-difference splitting of Roe with limiters, multigrid acceleration of a diagonalized ADI scheme with local time stepping, and patched/overlapped structured grids. In the computations, the flow is resolved not just in the cooling-jet/mainflow interaction region, but also inside the film-cooling holes and in the plenum. Computed results for adiabatic effectiveness for the case without struts were compared with experimental data, and reasonably good agreements were obtained.


Author(s):  
S M Fraser ◽  
Y Zhang

Three-dimensional turbulent flow through the impeller passage of a model mixed-flow pump has been simulated by solving the Navier-Stokes equations with an improved κ-ɛ model. The standard κ-ɛ model was found to be unsatisfactory for solving the off-design impeller flow and a converged solution could not be obtained at 49 per cent design flowrate. After careful analysis, it was decided to modify the standard κ-ɛ model by including the extra rates of strain due to the acceleration of impeller rotation and geometrical curvature and removing the mathematical ill-posedness between the mean flow turbulence modelling and the logarithmic wall function.


Sign in / Sign up

Export Citation Format

Share Document