scholarly journals ω-models of second order arithmetic and admissible sets

1978 ◽  
Vol 98 (2) ◽  
pp. 103-120
Author(s):  
W. Marek
1984 ◽  
Vol 49 (3) ◽  
pp. 867-879 ◽  
Author(s):  
Gerhard Jäger

The following is part of a series of papers on theories for (iterated) admissible sets (cf. [10], [11], [12], [14], [15]). Although these theories are weak subsystems of Zermelo-Fraenkel set theory, they allow one to formalize and prove a fair amount of definability theory and generalized recursion theory. Using this machinery it is in general not very hard to establish the connections between theories for admissible sets and (for example) systems of second order arithmetic. A proof-theoretic analysis of theories for admissible sets therefore provides quite a uniform and powerful framework for the proof-theoretic treatment of many systems of set theory, second order arithmetic and constructive mathematics (see [12] and [15]). The strongest result in this direction so far is the pair of proof-theoretic equivalenceswhere T0 is Feferman's system for explicit mathematics of [5] and [6], (-CA) + (BI) is the usual system of second order arithmetic with the axiom of -comprehension and bar induction and KPi is Kripke-Platek set theory with ∈-inductionfor arbitrary formulas and the additional axiom.The least standard model of KPi is L(i0) where i0 is the first recursively inaccessible ordinal.In this paper we are mainly interested in the theory KPi0 which results from KPi by severely restricting the principles of induction. Basically, complete induction on the natural numbersis allowed only for ∆0-formulas, and (IND∈) is omitted completely.


Author(s):  
Gerhard Jäger

AbstractThis short note is on the question whether the intersection of all fixed points of a positive arithmetic operator and the intersection of all its closed points can proved to be equivalent in a weak fragment of second order arithmetic.


2014 ◽  
Vol 79 (4) ◽  
pp. 1001-1019 ◽  
Author(s):  
ASHER M. KACH ◽  
ANTONIO MONTALBÁN

AbstractMany classes of structures have natural functions and relations on them: concatenation of linear orders, direct product of groups, disjoint union of equivalence structures, and so on. Here, we study the (un)decidability of the theory of several natural classes of structures with appropriate functions and relations. For some of these classes of structures, the resulting theory is decidable; for some of these classes of structures, the resulting theory is bi-interpretable with second-order arithmetic.


1993 ◽  
Vol 62 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Harvey Friedman ◽  
Stephen G. Simpson ◽  
Xiaokang Yu

2010 ◽  
Vol 16 (3) ◽  
pp. 378-402 ◽  
Author(s):  
Richard A. Shore

AbstractThis paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main systems of reverse mathematics. While retaining the usual base theory and working still within second order arithmetic, theorems are described that range from those far below the usual systems to ones far above.


1993 ◽  
Vol 58 (2) ◽  
pp. 557-578 ◽  
Author(s):  
Douglas K. Brown ◽  
Stephen G. Simpson

AbstractWorking within weak subsystems of second-order arithmetic Z2 we consider two versions of the Baire Category theorem which are not equivalent over the base system RCA0. We show that one version (B.C.T.I) is provable in RCA0 while the second version (B.C.T.II) requires a stronger system. We introduce two new subsystems of Z2, which we call and , and , show that suffices to prove B.C.T.II. Some model theory of and its importance in view of Hilbert's program is discussed, as well as applications of our results to functional analysis.


Sign in / Sign up

Export Citation Format

Share Document