Preparation of inorganic-organic hybrid membrane for peripheral nerve reconstruction

2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000173-000176
Author(s):  
Yuki Shirosaki ◽  
Satoshi Hayakawa ◽  
Akiyoshi Osaka ◽  
Maria A. Lopes ◽  
José D. Santos ◽  
...  

The treatment of peripheral nerve injuries is still one of the most challenging tasks in neurosurgery, as functional recovery is rarely satisfactory in these patients. The concept behind the use of biodegradable nerve guides is that no foreign material should be left in place after the device has fulfilled its task, so as to spare a second surgical intervention. In a previous study, flexible and biodegradable chitosan-3-glycidoxypropyltrimethoxysilane (GPTMS) hybrid membranes exhibited better cytocompatibility in terms of osteoblastic cells than chitosan membrane. Porous chitosan hybrid membranes, derived by freeze-drying the hybrid gels, showed that the cells were attached and proliferated both on the surface and into pores. In this study, the porous chitosan-silicate hybrid membranes with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord were used to reconstruct the crushed peripheral nerve. Axonotmesis lesion of 3 mm was enwrapped with the hybrid membranes with or without a monolayer of non-differentiated human mesenchymal stem cells. Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks. The combination of hybrid membranes and human MSCs infiltration showed a slightly better recovery than the untreated control (the just crushed nerve). On the other hand, the hybrid membrane alone promoted the crushed peripheral nerve reconstruction. It is expected that the porous chitosan hybrid membranes is candidate for the clinical tool in peripheral nerve reconstructive surgery.

Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Susumu Yamaguchi ◽  
Nobutaka Horie ◽  
Katsuya Satoh ◽  
Yoichi Morofuji ◽  
Tsuyoshi Izumo ◽  
...  

Background and purpose: Cell transplantation therapy holds great potential to improve impairments after stroke. However, the importance of donor age on therapeutic efficacy is uncertain. We investigate regenerative capacity of transplanted cells focusing on donor age (young vs. old) for ischemic stroke. Methods: The value of platelet-derived growth factor (PDGF)-BB secreted from human mesenchymal stem cells (hMSC) was analyzed regarding in two age groups; young (20-30 years) and old (57-65 years) in vitro. Male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion, and received young or old hMSC trans-arterially at 24 h after stroke. Functional recovery was assessed with modified neurological severity score (mNSS). Structural recovery was assessed on neovascularization and endogenous cell migration as well as trophic factor secretion. Results: The value of PDGF-BB was significantly higher in young hMSC (40.47±4.29 pg/ml/10 4 cells) than that in old hMSC (25.35±3.16 pg/ml/10 4 cells; P =0.02) and negatively correlated with age ( P =0.048, r=-0.79, Spearman). Rats treated with young hMSC (3.7±0.6) showed better behavior recovery in mNSS with prevention of brain atrophy than that with control (6.1±0.5) or old (5.2±0.7) at D21 ( P <0.01). The number of RECA-1 and PDGFR-β double positive vessels in rat with young hMSC (113±48.6/mm 2 ) was higher than that in control (61.5±35.9/mm 2 ) or old (76.9±36.9/mm 2 ) suggesting vessel maturation ( P <0.01). Interestingly, migration of neural stem/progenitor cells expressing Musashi-1 positively correlated with astrocyte process alignment ( P <0.01, r=0.27; Spearman), which was more pronounced in young hMSC ( P <0.05). Conclusions: Aging of hMSC may be the critical factor which affects outcome of cell therapy, and transplantation of young hMSC could provide better functional recovery by vessel maturation and endogenous cell migration potentially due to dominance of trophic factor secretion.


RSC Advances ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 4370-4379 ◽  
Author(s):  
Thanapon Charoenwongpaiboon ◽  
Kantpitchar Supraditaporn ◽  
Phatchanat Klaimon ◽  
Karan Wangpaiboon ◽  
Rath Pichyangkura ◽  
...  

Alternan α-1,3- and α-1,6-linked glucan, promotes proliferation, migration, and differentiation of human MSCs.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Sabine François ◽  
Benoit Usunier ◽  
Luc Douay ◽  
Marc Benderitter ◽  
Alain Chapel

There is little information on the fate of infused mesenchymal stem cells (MSCs) and long-term side effects after irradiation exposure. We addressed these questions using human MSCs (hMSCs) intravenously infused to nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice submitted to total body irradiation (TBI) or local irradiation (abdominal or leg irradiation). The animals were sacrificed 3 to 120 days after irradiation and the quantitative and spatial distribution of hMSCs were studied by polymerase chain reaction (PCR). Following their infusion into nonirradiated animals, hMSCs homed to various tissues. Engraftment depended on the dose of irradiation and the area exposed. Total body irradiation induced an increased hMSC engraftment level compared to nonirradiated mice, while local irradiations increased hMSC engraftment locally in the area of irradiation. Long-term engraftment of systemically administered hMSCs in NOD/SCID mice increased significantly in response to tissue injuries produced by local or total body irradiation until 2 weeks then slowly decreased depending on organs and the configuration of irradiation. In all cases, no tissue abnormality or abnormal hMSCs proliferation was observed at 120 days after irradiation. This work supports the safe and efficient use of MSCs by injection as an alternative approach in the short- and long-term treatment of severe complications after radiotherapy for patients refractory to conventional treatments.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yu Zhang ◽  
Dilaware Khan ◽  
Julia Delling ◽  
Edda Tobiasch

Human mesenchymal stem cells (hMSCs) are considered a promising cell source for regenerative medicine, because they have the potential to differentiate into a variety of lineages among which the mesoderm-derived lineages such adipo- or osteogenesis are investigated best. Human MSCs can be harvested in reasonable to large amounts from several parts of the patient’s body and due to this possible autologous origin, allorecognition can be avoided. In addition, even in allogenic origin-derived donor cells, hMSCs generate a local immunosuppressive microenvironment, causing only a weak immune reaction. There is an increasing need for bone replacement in patients from all ages, due to a variety of reasons such as a new recreational behavior in young adults or age-related diseases. Adipogenic differentiation is another interesting lineage, because fat tissue is considered to be a major factor triggering atherosclerosis that ultimately leads to cardiovascular diseases, the main cause of death in industrialized countries. However, understanding the differentiation process in detail is obligatory to achieve a tight control of the process for future clinical applications to avoid undesired side effects. In this review, the current findings for adipo- and osteo-differentiation are summarized together with a brief statement on first clinical trials.


Blood ◽  
2005 ◽  
Vol 105 (10) ◽  
pp. 4120-4126 ◽  
Author(s):  
Xiao-Xia Jiang ◽  
Yi Zhang ◽  
Bing Liu ◽  
Shuang-Xi Zhang ◽  
Ying Wu ◽  
...  

AbstractMesenchymal stem cells (MSCs), in addition to their multilineage differentiation, have a direct immunosuppressive effect on T-cell proliferation in vitro. However, it is unclear whether they also modulate the immune system by acting on the very first step. In this investigation, we addressed the effects of human MSCs on the differentiation, maturation, and function of dendritic cells (DCs) derived from CD14+ monocytes in vitro. Upon induction with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin-4 (IL-4), MSC coculture could strongly inhibit the initial differentiation of monocytes to DCs, but this effect is reversible. In particular, such suppression could be recapitulated with no intercellular contact at a higher MSC/monocyte ratio (1:10). Furthermore, mature DCs treated with MSCs were significantly reduced in the expression of CD83, suggesting their skew to immature status. Meanwhile, decreased expression of presentation molecules (HLA-DR and CD1a) and costimulatory molecules (CD80 and CD86) and down-regulated IL-12 secretion were also observed. In consistence, the allostimulatory ability of MSC-treated mature DCs on allogeneic T cells was impaired. In conclusion, our data suggested for the first time that human MSCs could suppress monocyte differentiation into DCs, the most potent antigen-presenting cells (APCs), thus indicating the versatile regulation of MSCs on the ultimate specific immune response.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ramon Lopez Perez ◽  
Jannek Brauer ◽  
Alexander Rühle ◽  
Thuy Trinh ◽  
Sonevisay Sisombath ◽  
...  

AbstractAlbeit being an effective therapy for various cutaneous conditions, UV-B irradiation can cause severe skin damage. While multipotent mesenchymal stem cells (MSCs) may aid the regeneration of UV-B-induced skin injuries, the influence of UV-B irradiation on MSCs remains widely unknown. Here, we show that human MSCs are relatively resistant to UV-B irradiation compared to dermal fibroblasts. MSCs exhibited higher clonogenic survival, proliferative activity and viability than dermal fibroblasts after exposure to UV-B irradiation. Cellular adhesion, morphology and expression of characteristic surface marker patterns remained largely unaffected in UV-irradiated MSCs. The differentiation ability along the adipogenic, osteogenic and chondrogenic lineages was preserved after UV-B treatment. However, UV-B radiation resulted in a reduced ability of MSCs and dermal fibroblasts to migrate. MSCs exhibited low apoptosis rates after UV-B irradiation and repaired UV-B-induced cyclobutane pyrimidine dimers more efficiently than dermal fibroblasts. UV-B irradiation led to prolonged p53 protein stability and increased p21 protein expression resulting in a prolonged G2 arrest and senescence induction in MSCs. The observed resistance may contribute to the ability of these multipotent cells to aid the regeneration of UV-B-induced skin injuries.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Botti Chiara ◽  
Caiafa Ilaria ◽  
Coppola Antonietta ◽  
Cuomo Francesca ◽  
Miceli Marco ◽  
...  

Human mesenchymal stem cells (hMSCs) are attractive for clinical and experimental purposes due to their capability of self-renewal and of differentiating into several cell types. Autologous hMSCs transplantation has been proven to induce therapeutic angiogenesis in ischemic disorders. However, the molecular mechanisms underlying these effects remain unclear. A recent report has connected MSCs multipotency to sirtuin families, showing that SIRT1 can regulate MSCs function. Furthermore, SIRT1 is a critical modulator of endothelial angiogenic functions. Here, we described the generation of an immortalized human mesenchymal bone marrow-derived cell line and we investigated the angiogenic phenotype of our cellular model by inhibiting SIRT1 by both the genetic and pharmacological level. We first assessed the expression of SIRT1 in hMSCs under basal and hypoxic conditions at both RNA and protein level. Inhibition of SIRT1 by sirtinol, a cell-permeable inhibitor, or by specific sh-RNA resulted in an increase of premature-senescence phenotype, a reduction of proliferation rate with increased apoptosis. Furthermore, we observed a consistent reduction of tubule-like formation and migration and we found that SIRT1 inhibition reduced the hypoxia induced accumulation of HIF-1α protein and its transcriptional activity in hMSCs. Our findings identify SIRT1 as regulator of hypoxia-induced response in hMSCs and may contribute to the development of new therapeutic strategies to improve regenerative properties of mesenchymal stem cells in ischemic disorders through SIRT1 modulation.


Sign in / Sign up

Export Citation Format

Share Document