Effects of Extended Dwell Time on Thermal Fatigue Life of Ceramic Chip Resistors

2012 ◽  
Vol 2012 (1) ◽  
pp. 000127-000135 ◽  
Author(s):  
Elviz George ◽  
Michael Osterman ◽  
Michael Pecht ◽  
Richard Coyle

The understanding of the effects of temperature cycling parameters, such as dwell and ramp times, mean cyclic temperature, and temperature range, on the fatigue life of solder interconnects is critical for qualification and reliability testing. After the solder achieves complete stress relaxation, a further increase in dwell time does not decrease the fatigue life of solder interconnects. Studies have shown that an increase in dwell time beyond a certain limit (10–20 minutes) has no effect on the fatigue life of eutectic tin-lead solder when cycled at peak cycle temperatures at or above 100°C. The duration of stress relaxation is longer in SnAgCu and SnCu solders than in eutectic tin-lead solder, resulting in higher creep damage accumulation and thereby reducing the fatigue life of solder interconnects. Experimental data for modeling of the effects of extended dwell time (beyond 60 minutes) on the temperature cycling reliability of tin-silver-copper solders is limited. In this study, forty 2512 ceramic chip resistors soldered onto an FR4 board using SAC105, SAC305, SN100C, and eutectic SnPb solders were subjected to temperature cycling tests with dwell time durations of 10 and 120 minutes, respectively. Resistors soldered on standard and narrow pads were compared to study the effects of pad size on thermal fatigue reliability. In eutectic SnPb-soldered narrow pad resistors, the increase in dwell time to 120 minutes did not change the cycles to failure. However, SnPb-soldered standard pad resistors showed a decrease in fatigue life with the increase in dwell time. For SAC105- and SAC305-soldered narrow and standard pad resistors, the 120-min dwell decreased the thermal fatigue life, compared to the 10-min dwell. The thermal fatigue life of SN100C-soldered narrow pad resistors increased when the dwell time was increased to 120 minutes, while that of the standard pad decreased. In the case of narrow pad resistors, extended dwell may be have annealed the SN100C solder, making it more robust to solder fatigue.

Author(s):  
John Lau ◽  
Walter Dauksher

The effects of temperature-cycling dwell-time on the thermal-fatigue life of lead-free solder joints are investigated in this study. Emphasis is placed on the determination of creep responses and the creep strain energy density per cycle of a PBGA (plastic ball grid array) package’s lead-free solder joints subjected to various dwell times (namely, 15, 60, and 480 minutes) at peak cycling temperatures (0°C and 100°C).


Author(s):  
T. E. Wong ◽  
C. Chu

A simplified method was developed to determine the fatigue life of a ceramic column grid array (CCGA) solder joint when exposed to thermal environments. The CCGA package with 90Pb/10Sn solder columns is soldered onto the printed circuit board with a tin-lead solder paste. Failure of the solder joint occurs at the CCGA solder column. A closed-form solution with the equilibrium of displacements of electronic package assembly was first derived to calculate the solder joint strains during the temperature cycling. In the calculation, an iteration technique was used to obtain a convergent solution in the solder strains, and the elastic material properties were used for all the electronic package assembly components except for the solder materials, which used elastic-plastic properties. A fatigue life prediction model, evolved from an empirically derived formula based upon a modified Coffin-Manson fatigue theory, was then established. CCGA test results, obtained from various sources, combined with the derived solder strains were used to calibrate the proposed life prediction model. In the model calibration process, the 625- and 1657-pin CCGA test results, which were cycled between 20°C/90°C, 0°C/100°C, −55°C/110°C, or −55°C/125°C, were reasonably well correlated to the calculated values of solder strains. In addition, this calibrated model is remarkably simple compared to the model used in an evaluation by a finite element analysis. Therefore, this model could be used and is recommended to serve as an effective tool to make a preliminarily estimate at the CCGA solder joint thermal fatigue life. It is also recommended to 1) select more study cases with various solder joint configurations, package sizes, environmental profiles, etc. to further calibrate this life prediction model, 2) use this model to conduct parametric studies to identify critical factors impacting solder joint fatigue life and then seeking an optimum design, and 3) develop a similar life prediction model for lead-free solder materials.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000510-000513
Author(s):  
Sandeep Menon ◽  
Michael Osterman ◽  
Michael Pecht

With increased portability and miniaturization of modern day electronics, the mechanical robustness of these systems has become more of a concern. Existing standards for conducting mechanical durability tests of electronic assemblies include bend, shock/drop, vibration and torsion. Though these standards provide insights into both cyclic fatigue and overstress damage incurred in the solder interconnects (widely regarded as the primary mode of failure in electronic assemblies), they fail to address the impact of time dependent (creep) behavior due to sustained mechanical loads on the solder interconnect durability. It has been seen that the solder durability under thermal cycling loads is inversely proportional to the dwell time or hold time at either temperature extreme of the imposed temperature cycle. Fatigue life models, which include dwell time, have been developed for solder interconnects subject to temperature cycling. However the fatigue life models that have been developed in literature for solder interconnects under mechanical loads fail to address the impact the duration of loading. In this study, solder interconnect test vehicles were subject to cyclic mechanical bending with varying dwell times in order to understand the impact of duration of mechanical loads on the solder interconnect durability. The solder interconnects examined in this study were formed with 2512 resistor packages using varying solder compositions (SnPb and SAC305). In order to evaluate the impact of dwell time, the boards were tested with a 60 second and a 300 second dwell time on both extremes of the loading profile. It was observed that an increase in dwell time of the loading profile resulted in a decrease in the characteristic life of the solder interconnects.


Author(s):  
T. E. Wong ◽  
C. Y. Lau ◽  
L. A. Kachatorian ◽  
H. S. Fenger ◽  
I. C. Chen

The objective of the present study is to evaluate the impact of electronic packaging design/manufacturing process parameters on the thermal fatigue life of ball grid array (BGA) solder joints. The four selected parameters are BGA under-fill materials, conformal coating, solder pad sizes on printed wiring board, and BGA rework, with each having either two or three levels of variation. A test vehicle (TV), on which various sizes of BGA daisy-chained packages are soldered, is first designed and fabricated, and then subjected to temperature cycling (−55°C to +125°C) with continuous monitoring of solder joint integrity. The total of 15 experimental cases is used in the present study. Based on monitored results, a destructive physical analysis is conducted to further isolate the failure locations and determine the failure mechanisms of the solder joints. Test results indicate that the influence of these design parameters on fatigue life is dependent on the particular package, in some instances improving the fatigue life tenfold.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Guofeng Xia ◽  
Fei Qin ◽  
Cha Gao ◽  
Tong An ◽  
Wenhui Zhu

A design of experiment (DOE) methodology based on numerical simulation is presented to improve thermal fatigue reliability of multirow quad flat nonlead (QFN) packages. In this method, the influences of material properties, structural geometries, and temperature cycling profiles on thermal fatigue reliability are evaluated, a L27(38) orthogonal array is built based on Taguchi method to figure out optimized factor combination design for promoting thermal fatigue reliability. Analysis of variance (ANOVA) is carried out to examine the influence of factors on the thermal fatigue reliability and to find the significant factors. Anand constitutive model is adopted to describe the viscoplastic behavior of lead-free solder Sn3.0Ag0.5Cu. The stress and strain in solder joints under temperature cycling are studied by 3D finite element (FE) model. The modified Coffin–Manson model is employed to predict the fatigue life of solder joints. Results indicate that the coefficients of thermal expansion (CTE) of printed circuit board (PCB), the height of solder joint, and CTE of epoxy molding compound (EMC) have critical influence on thermal fatigue life of solder joints. The fatigue life of multirow QFN package with original design is 767 cycles, which can be substantially improved by 5.43 times to 4165 cycles after the optimized factor combination design based on the presented method.


2019 ◽  
Vol 30 (8) ◽  
pp. 7654-7664 ◽  
Author(s):  
Xu Long ◽  
Yongchao Liu ◽  
Fengrui Jia ◽  
Yanpei Wu ◽  
Yonghui Fu ◽  
...  

Author(s):  
Haifei Lu ◽  
Jie Cai ◽  
Kaiyu Luo ◽  
Fei Xing ◽  
Qunli Zhang ◽  
...  

2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

Sign in / Sign up

Export Citation Format

Share Document