scholarly journals Launching proton-dominated jets from accreting Kerr Black Holes: the case of M87

2011 ◽  
Vol 1 (1) ◽  
pp. e4
Author(s):  
Felix F. Brezinski ◽  
Ahmad A. Hujeirat

A general relativistic model for the formation and acceleration of low mass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iii- a transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally unbound two-temperature proton-dominated outflow. Our model predicts the known correlation between the Lorentz-factor and the spin parameter of the BH. It also shows that the effective surface of the BL, through which the baryons flow into the TZ, shrinks with increasing the spin parameter, implying therefore that low mass-loaded jets most likely originate from around Kerr black holes. When applying our model to the jet in the elliptical galaxy M87, we find a spin parameter a ∈ [0.99, 0.998], a transition radius rtr ≈ 30 gravitational radii and a fraction of 0.05 − 0.1 of the mass accretion rate goes into the TZ, where the plasma speeds up its outward-oriented motion to reach a Lorentz factor Γ ∈ [2.5, 5.0] at rtr.

2011 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Felix F. Brezinski ◽  
Ahmad A. Hujeirat

A general relativistic model for the formation and acceleration of low mass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iii- a transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally unbound two-temperature proton-dominated outflow. Our model predicts the known correlation between the Lorentz-factor and the spin parameter of the BH. It also shows that the effective surface of the BL, through which the baryons flow into the TZ, shrinks with increasing the spin parameter, implying therefore that low mass-loaded jets most likely originate from around Kerr black holes. When applying our model to the jet in the elliptical galaxy M87, we find a spin parameter <em>a ∈</em> [0.99, 0.998], a transition radius rtr ≈ 30 gravitational radii and a fraction of 0.05 − 0.1 of the mass accretion rate goes into the TZ, where the plasma speeds up its outward-oriented motion to reach a Lorentz factor Γ <em>∈</em> [2.5, 5.0] at rtr.


10.4081/706 ◽  
2011 ◽  
Vol 1 (1) ◽  
pp. e4
Author(s):  
Felix F. Brezinski ◽  
Ahmad A. Hujeirat

A general relativistic model for the formation and acceleration of low mass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iii- a transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally unbound two-temperature proton-dominated outflow. Our model predicts the known correlation between the Lorentz-factor and the spin parameter of the BH. It also shows that the effective surface of the BL, through which the baryons flow into the TZ, shrinks with increasing the spin parameter, implying therefore that low mass-loaded jets most likely originate from around Kerr black holes. When applying our model to the jet in the elliptical galaxy M87, we find a spin parameter a ∈ [0.99, 0.998], a transition radius rtr ≈ 30 gravitational radii and a fraction of 0.05 − 0.1 of the mass accretion rate goes into the TZ, where the plasma speeds up its outward-oriented motion to reach a Lorentz factor Γ ∈ [2.5, 5.0] at rtr.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


2006 ◽  
Vol 2 (S238) ◽  
pp. 367-368
Author(s):  
Keigo Fukumura ◽  
Masaaki Takahashi ◽  
Sachiko Tsuruta

AbstractWe study magnetohydrodynamic (MHD) standing shocks in ingoing plasmas in a black hole (BH) magnetosphere. We find that low or mid latitude (non-equatorial) standing MHD shocks are both physically possible, creating very hot and/or magnetized plasma regions close to the event horizon. We also investigate the effects of the poloidal magnetic field and the BH spin on the properties of shocks and show that both effects can quantitatively affect the MHD shock solutions. MHD shock formation can be a plausible mechanism for creating high energy radiation region above an accretion disk in AGNs.


Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


1987 ◽  
Vol 115 ◽  
pp. 384-384
Author(s):  
S. Hinata

There is a simple relationship among moment of inertia I, rotational kinetic energy K, and momentum L given by (David Layzer, private communication), 2IK ≧ L. During the Hayashi phase a rotating protostar will amplify the trapped magnetic field by a dynamo-like process. Since the rotation is expected to be fast, many unstable modes will be excited and will grow exponentially in time until some nonlinear processes saturate the amplitude. However, it may happen that the reduction in rotational kinetic energy becomes so large that without increasing the moment of inertia the inequality given above may not be satisfied. The only way to increase the moment of inertia is to move the mass outward. This can be done by transferring the angular momentum outward through the magnetic field. So we will have a fast rotating mass shell at the outer edge of the star. Further transfer of angular momentum will push the shell against the accretion disk; the moving masses of the disk will divert the mass flow along the background magnetic field which extends perpendicular to the accretion disk. This results in the hollow cone jets from both poles because the outward motion is primarily on the equatorial plane.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544022 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

Kerr black holes (BHs) have their angular momentum, [Formula: see text], bounded by their mass, [Formula: see text]: [Formula: see text]. There are, however, known BH solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat BHs, given in terms of an appropriately defined horizon linear velocity, [Formula: see text]. The [Formula: see text] bound is simply that [Formula: see text] cannot exceed the velocity of light. We verify the [Formula: see text] bound for known BH solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr BHs saturate the [Formula: see text] bound.


2002 ◽  
Vol 19 (1) ◽  
pp. 125-128 ◽  
Author(s):  
Alina-C. Donea ◽  
Peter L. Biermann

AbstractThis paper discusses the boundary layer and the emission spectrum from an accretion disk having a jet anchored at its inner radius, close to the black hole. We summarise our earlier work and apply it to the accretion disks of some blazars. We suggest that the ‘accretion disk with jet’ (ADJ) model could make the bridge between standard accretion disk models (suitable for quasars and FRii sources) and low-power advection dominated accretion disk models (suitable for some of the low-power BL Lacs and FRi sources).The jet is collimated within a very narrow region close to the black hole (nozzle). In our model it is assumed that the boundary layer of the disk is the region between radius Rms — the last marginally stable circular orbit calculated for a Kerr geometry — and the radius Rjet, which gives the thickness of the ‘footring’, i.e. the base of the jet. We analyse the size of the boundary layer of the disk where the jet is fed with energy, mass, and angular momentum. As a consequence of the angular momentum extraction, the accretion disk beyond Rjet no longer has a Keplerian flow. A hot corona usually surrounds the disk, and entrainment of the corona along the flow could also be important for the energy and mass budget of the jet.We assume that the gravitational energy available at the footring of the jet goes into the jet, and so the spectrum from the accretion disk gives a total luminosity smaller than that of a ‘standard’ accretion disk, and our ADJ model should apply for blazars with low central luminosities. Variations of the boundary layer and nozzle may account for some of the variability observed in active galactic nuclei.


2004 ◽  
Vol 194 ◽  
pp. 128-129
Author(s):  
Włodek Kluźniak

AbstractNon-linear oscillations in the accretion disk are favored as an explanation of high-frequency QPOs observed in the light curves of low-mass X-ray binaries containing neutron stars, black holes, or white dwarfs.


1991 ◽  
Vol 147 ◽  
pp. 438-439
Author(s):  
Eric Keto

A simple calculation of the expected spectral signatures of model protostellar accretion flows suggests how the rotation curve of the accretion disk may be deduced from radio frequency molecular line observations. We compare synthetic observations with actual data to derive rotation curves, braking torques, and minimum magnetic field energies required to effect the braking.


Sign in / Sign up

Export Citation Format

Share Document