scholarly journals Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry

2015 ◽  
Vol 59 (2) ◽  
Author(s):  
A.M. Schläfli ◽  
S. Berezowska ◽  
O. Adams ◽  
R. Langer ◽  
M.P. Tschan

Autophagy assures cellular homeostasis, and gains increasing importance in cancer, where it impacts on carcinogenesis, propagation of the malignant phenotype and development of resistance. To date, its tissue-based analysis by immunohistochemistry remains poorly standardized. Here we show the feasibility of specifically and reliably assessing the autophagy markers LC3B and p62 (SQSTM1) in formalin fixed and paraffin embedded human tissue by immunohistochemistry. Preceding functional experiments consisted of depleting LC3B and p62 in H1299 lung cancer cells with subsequent induction of autophagy. Western blot and immunofluorescence validated antibody specificity, knockdown efficiency and autophagy induction prior to fixation in formalin and embedding in paraffin. LC3B and p62 antibodies were validated on formalin fixed and paraffin embedded cell pellets of treated and control cells and finally applied on a tissue microarray with 80 human malignant and non-neoplastic lung and stomach formalin fixed and paraffin embedded tissue samples. Dot-like staining of various degrees was observed in cell pellets and 18/40 (LC3B) and 22/40 (p62) tumors, respectively. Seventeen tumors were double positive for LC3B and p62. P62 displayed additional significant cytoplasmic and nuclear staining of unknown significance. Interobserver-agreement for grading of staining intensities and patterns was substantial to excellent (kappa values 0.60 - 0.83). In summary, we present a specific and reliable IHC staining of LC3B and p62 on formalin fixed and paraffin embedded human tissue. Our presented protocol is designed to aid reliable investigation of dysregulated autophagy in solid tumors and may be used on large tissue collectives.

2016 ◽  
Vol 10 ◽  
pp. 9-18 ◽  
Author(s):  
Tue Bjerg Bennike ◽  
Kenneth Kastaniegaard ◽  
Simona Padurariu ◽  
Michael Gaihede ◽  
Svend Birkelund ◽  
...  

Author(s):  
Robin Verjans ◽  
Annette H. Bruggink ◽  
Robby Kibbelaar ◽  
Jos Bart ◽  
Aletta Debernardi ◽  
...  

AbstractBiobanks play a crucial role in enabling biomedical research by facilitating scientific use of valuable human biomaterials. The PALGA foundation—a nationwide network and registry of histo- and cytopathology in the Netherlands—was established to promote the provision of data within and between pathology departments, and to make the resulting knowledge available for healthcare. Apart from the pathology data, we aimed to utilize PALGA’s nationwide network to find and access the rich wealth of Formalin-Fixed Paraffin-Embedded (FFPE) tissue samples for scientific use.  We implemented the Dutch National TissueArchive Portal (DNTP) to utilize PALGA’s nationwide network for requesting FFPE tissue samples. The DNTP consists of (1) a centrally organized internet portal to improve the assessing, processing, harmonization, and monitoring of the procurement process, while (2) dedicated HUB-employees provide practical support at peripheral pathology departments. Since incorporation of the DNTP, both the number of filed requests for FFPE tissue samples and the amount of HUB-mediated support increased 55 and 29% respectively. In line, the sample procurement duration time decreased significantly (− 47%). These findings indicate that implementation of the DNTP improved the frequency, efficiency, and transparency of FFPE tissue sample procurement for research in the Netherlands. To conclude, the need for biological resources is growing persistently to enable precision medicine. Here, we access PALGA’s national, pathology network by implementation of the DNTP to allow for efficient, consistent, and transparent exchange of FFPE tissue samples for research across the Netherlands.


2021 ◽  
pp. jclinpath-2021-207723
Author(s):  
Paola Rafaniello-Raviele ◽  
Ilaria Betella ◽  
Alessandra Rappa ◽  
Davide Vacirca ◽  
Gianluca Tolva ◽  
...  

AimsAnalysis of microsatellite instability (MSI) is strongly recommended in endometrial cancer (EC) and colorectal cancer to screen for Lynch syndrome, to predict prognosis and to determine optimal treatment and follow-up. In a large monoinstitutional series of ECs, we evaluated the reliability and accuracy of Idylla assay, a rapid, fully automated system to detect MSI, and we compared its performance with two routine reference methods.MethodsWe evaluated MSI status in 174 formalin-fixed, paraffin-embedded EC tissue samples using immunohistochemistry (IHC) for mismatch repair (MMR) proteins and Idylla assay. Samples with discordant or equivocal results were analysed with a third technique, the Promega MSI kit.ResultsIdylla MSI assay and IHC were highly concordant (overall agreement: 154/170=90.59%, 95% CI 85.26% to 94.12%). However, in four samples, MMR-IHC staining was equivocal; moreover, 16 cases showed discordant results, that is, MMR deficient using IHC and microsatellite stable using Idylla. These 20 samples were reanalysed using the MSI-Promega kit, which showed the same results of Idylla assay in 18/20 cases (overall agreement: 90%, 95% CI 69.90% to 97.21%).ConclusionsOur results suggest that IHC is an efficient method to determine MMR status in ECs. However, the Idylla MSI assay is a rapid and reliable tool to define MSI status, and it could represent a valuable alternative to conventional MSI-PCR methods.


2021 ◽  
Vol 45 (4) ◽  
pp. 262-267
Author(s):  
Yılmaz Baş ◽  
Yunus Emre Beyhan ◽  
Havva Hande Keser Şahin ◽  
Tuğba Özçerezci ◽  
Dursun Karasartova ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pauline Gilson ◽  
Julien Levy ◽  
Marie Rouyer ◽  
Jessica Demange ◽  
Marie Husson ◽  
...  

Abstract Microsatellite instability (MSI) status is routinely assessed in patients with colorectal and endometrial cancers as it contributes to Lynch syndrome initial screening, tumour prognosis and selecting patients for immunotherapy. Currently, standard reference methods recommended for MSI/dMMR (deficient MisMatch Repair) testing consist of immunohistochemistry and pentaplex PCR-based assays, however, novel molecular-based techniques are emerging. Here, we aimed to evaluate the performance of a custom capture-based NGS method and the Bio-Rad ddPCR and Idylla approaches for the determination of MSI status for theranostic purposes in 30 formalin-fixed paraffin embedded (FFPE) tissue samples from patients with endometrial (n = 15) and colorectal (n = 15) cancers. All samples were previously characterised using IHC and Promega MSI Analysis System and these assays set as golden standard. Overall agreement, sensitivity and specificity of our custom-built NGS panel were 93.30%, 93.75% and 92.86% respectively. Overall agreement, sensitivity and specificity were 100% with the Idylla MSI system. The Bio-Rad ddPCR MSI assay showed a 100% concordance, sensitivity and specificity. The custom capture-based NGS, Bio-Rad ddPCR and Idylla approaches represent viable and complementary options to IHC and Promega MSI Analysis System for the detection of MSI. Bio-Rad ddPCR and Idylla MSI assays accounts for easy and fast screening assays while the NGS approach offers the advantages to simultaneously detect MSI and clinically relevant genomic alterations.


Sign in / Sign up

Export Citation Format

Share Document