scholarly journals Experimental analysis on concrete blocks reinforced with Arundo donax fibers

Author(s):  
Canio Manniello ◽  
Giuseppe Cillis ◽  
Dina Statuto ◽  
Andrea Di Pasquale ◽  
Pietro Picuno

Over the last decades, there has been a growing attention in research and development on non-conventional building materials, such as vegetable fibers (e.g., flax; hemp; jute; etc.), to be used as eco-friendly materials in a wide range of applications in civil construction. The main reasons of this interest are related to the specific properties, price and sustainability of natural fibers, which can be considered as “green” building materials. In this article, the tensile strength of a new type of fibers extracted from stem of the Giant Reed Arundo donax L., has been investigated. These fibers, which widely grow in Mediterranean areas, but that are diffused all around the world as well, have been extracted from the outer part of the plant stem. Then, in order to have an initial idea of their influence on the mechanical properties of concrete, some experimental  bricks have been prepared, with the addition of different weight percentages of this vegetal fiber. To assess the mechanical properties of these bricks,  compression and tensile tests on the whole block has been performed. Hence, the differences between concrete bricks without any fiber and those reinforced with different weight percentages of natural fiber have been analyzed, then assessing their potential applications in bio-architecture.

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2220
Author(s):  
Zaida Ortega ◽  
Francisco Romero ◽  
Rubén Paz ◽  
Luis Suárez ◽  
Antonio Nizardo Benítez ◽  
...  

This paper compares the mechanical properties of different natural fiber composites produced by rotational molding as a way of waste valorization from campaigns to control invasive plant species in Macaronesia. Rotomolded parts produced with polymeric matrices (polyethylene) and filled with up to 20% by weight of cellulosic fibers obtained from Arundo donax L., Pennisetum setaceum, and Ricinus communis plants were characterized in terms of tensile, flexural, and impact strength. It was found that the sieving of natural fibers allowed for their introduction in higher loadings, from 10 (for un-sieved material) to 20%; fiber size greatly affected the mechanical properties of the final parts, although some combinations were proven not to reduce the mechanical properties of the neat resin. This study is a first approach to the valorization of residues obtained from periodic campaigns of the control of invasive species performed by public authorities, usually at the local level. It is important to highlight that the main objective of this research did not focus on economically profitable activity; instead, it was focused on the reduction of wastes to be disposed from ecosystem maintenance actions and the investment of potential income into preservation policies.


2007 ◽  
Vol 344 ◽  
pp. 143-150 ◽  
Author(s):  
Gianluca Buffa ◽  
Livan Fratini ◽  
Marion Merklein ◽  
Detlev Staud

Tight competition characterizing automotive industries in the last decades has determined a strong research effort aimed to improve utilized processes and materials in sheet stamping. As far as the latter are regarded light weight alloys, high strength steels and tailored blanks have been increasingly utilized with the aim to reduce parts weight and fuel consumptions. In the paper the mechanical properties and formability of tailored welded blanks made of a precipitation hardenable aluminum alloy but with different sheet thicknesses, have been investigated: both laser welding and friction stir welding have been developed to obtain the tailored blanks. For both welding operations a wide range of the thickness ratios has been considered. The formability of the obtained blanks has been characterized through tensile tests and cup deep drawing tests, in order to show the formability in dependency of the stress condition; what is more mechanical and metallurgical investigations have been made on the welded joints.


2013 ◽  
Vol 315 ◽  
pp. 443-447 ◽  
Author(s):  
S.K.A. Saferi ◽  
Y. Yusof

As demand for clean and healthy environment, people make many alternate solutions to save the environment. To save trees and overcome landfill of waste material and waste disposal by burning activities issues (cause to losing energy and increase pollution), people nowadays take recycling as a recovery. Recycling waste paper into new product increased over the years. Shortage of wood supply required new sources of natural fiber for papermaking industry. Many researchers have studied new sources of natural fibers from non wood materials, such as oil palm residues, kenaf (Hibiscus Cannabinus), pineapple leaf, banana, and coconut fiber. Kenaf is choose as reinforcement agent for recycled waste paper to maximize the use of kenaf in industry application due its wide range of advantages where pineapple leaf are choose as reinforcement agent because abundantly of these material in Malaysia. Reinforcement of natural fiber into waste paper during recycling process expected to increased strength properties of final product. To understand the right and suitable processing method for kenaf fiber and pineapple leaf leaves previous work from other researchers are studied to investigate pulping procedure of natural fiber and its effect on mechanical strength.


Natural fibers from plants are gaining importance and may substitute wood in the production of wood plastic composites (WPC). To ensure continuity of fiber supply and sustainability of WPC industries, fibers of various types could be mixed together to obtain Mix WPC. However, research need to be carried out to identify the contribution of different fiber type collectively to the mechanical properties of Mix natural fiber polymer composite (NFPC). In this study, preliminary work on the use of natural fibre (NF) such as kenaf, sugar palm and pineapple leaf fibers in the preparation of Mix NFPC were carried out. Four different fiber mix samples with different fiber ratio and size were formulated using polypropylene (PP) as the polymer matrix. Montmorrilonite (MMT) filler was added at constant amount for enhancement of composite mechanical properties. Samples were mixed and prepared using a twin screw extruder and mini injection moulding resepectively. Individual fibers and NFPC prepared were characterized using thermogravimetric analyzer (TGA). Tensile, flexural and impact strength of the composites were determined. Generally, it was found that addition of fiber mix at 50% fiber loading enhance the tensile and flexural strength of the various NFPC with minimal exceptions. The impact strength of the composites were comparable to that of blank PP implying that addition of fiber gives additional advantage besides being eco-friendly. It was also found that higher kenaf loading and different size of fiber mix contribute positively to the various strengths measured. In addition to that, composition of individual fibers also contribute to the mechanical properties of the NFPCs


2017 ◽  
Vol 867 ◽  
pp. 41-47 ◽  
Author(s):  
Chitra Umachitra ◽  
N.K. Palaniswamy ◽  
O.L. Shanmugasundaram ◽  
P.S. Sampath

Natural fibers have been used to reinforce materials in many composite structures. Many types of natural fibers have been investigated including flax, hemp, ramie, sisal, abaca, banana etc., due to the advantage that they are light weight, renewable resources and have marketing appeal. These agricultural wastes can also be used to prepare fiber reinforced polymer hybrid composites in various combinations for commercial use. Application of composite materials in structural applications has presented the need for the engineering analysis. The present work focuses on the fabrication of polymer matrix composites by using natural fibers like banana and cotton which are abundant in nature and analysing the effect of mechanical properties of the composites on different surface treatments on the fabric. The effect of various surface treatments (NaOH, SLS, KMnO4) on the mechanical properties namely tensile, flexural and impact was analyzed and are discussed in this project. Analysing the material characteristics of the compression moulded composites; their results were measured on sections of the material to make use of the natural fiber reinforced polymer composite material for automotive seat shell manufacturing.


Fibers ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 59 ◽  
Author(s):  
Yunlong Jia ◽  
Bodo Fiedler

Poor moisture resistance of natural fiber reinforced bio-composites is a major concern in structural applications. Many efforts have been devoted to alleviate degradation of bio-composites caused by moisture absorption. Among them, fiber pre-treatment has been proven to be effective. This paper proposes an alternative “green” fiber pretreatment with furfuryl alcohol. Pre-treatments with different parameters were performed and the influence on the mechanical properties of fiber bundles and composites was investigated. Moisture resistance of composites was evaluated by water absorption tests. Mechanical properties of composites with different water contents were analyzed in tensile tests. The results show that furfuryl alcohol pretreatment is a promising method to improve moisture resistance and mechanical properties (e.g., Young’s modulus increases up to 18%) of flax fiber composites.


2019 ◽  
Vol 23 ◽  
pp. 6-30
Author(s):  
Volkan Uğraşkan ◽  
Abdullah Toraman ◽  
A. Binnaz Hazar Yoruç

In early composite materials, the use of petroleum based fibers such as glass and carbon fibers, aramid etc. was common. In order to reduce the dependency on petroleum based sources and environmental pollution, researchers have focused on the search for alternative sources. Natural fibers are abundant, recyclable and biodegradable plant derived materials. Besides, thanks to good physical, thermal and mechanical properties, natural fibers become promising alternative for composites. This review includes information about natural fiber reinforced composites’ components, manufacturing methods, mechanical properties and applications.


2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


Fibers ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 75 ◽  
Author(s):  
Vincenzo Fiore ◽  
Elpida Piperopoulos ◽  
Luigi Calabrese

In the last years, natural fibers are increasingly investigated as an oil recovery system in order to overcome the oil spillage phenomena, thus preserving environment and aquatic life. In particular, lignocellulose-based fibers have recently been employed with promising results. In such a context, the aim of this paper is to assess the oil sorption capability of natural fibers extracted from the stem of the giant reed Arundo donax L., a perennial rhizomatous grass belonging to the Poaceae family that grows naturally all around the world thanks to its ability to tolerate different climatic conditions. Sorption tests in several pollutants and water as a reference were carried out. The fibers have absorption capacities that are about five to six times their weight. Depending on the high absorption kinetics, possible applicative interests can be identified. Eventually, depending on the fiber size, adsorption properties were related to the microstructure and morphology of Arundo donax fibers.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
P. B. Mohankumara ◽  
Shraddha Prashant Thakare ◽  
Vijaykumar Guna ◽  
G. R. Arpitha

AbstractIn this work, the potential for using Millettia pinnata stalk for extracting cellulosic natural fibers and its subsequent use in reinforced composites was studied. The extracted fibers were characterized for its composition, mechanical, thermal stability and morphological properties. Compositional analysis showed that the fibers possessed 54% cellulose, 12% hemicellulose, 15% lignin and 11% ash. The tensile strength of the fiber was 310 MPa, which is comparable to cotton and linen. The tensile strength of the M. pinnata fiber-reinforced polypropylene composites was 17.96 MPa which was similar to other natural fiber-based composites. M. pinnata fibers appear promising for a wide range of applications including textiles and other typical composites applications.


Sign in / Sign up

Export Citation Format

Share Document