scholarly journals 3D printing in shoulder surgery

2020 ◽  
Author(s):  
Vincenzo Campana ◽  
Valentina Cardona ◽  
Valeria Vismara ◽  
Andrea Stefano Monteleone ◽  
Piero Piazza ◽  
...  

Three-dimensional (3D) printing is a novel modality with the potential to make a huge impact in the surgical field. The aim of this paper is to provide an overview on the current use of 3D printing in shoulder surgery. We have reviewed the use of this new method in 3 fields of shoulder surgery: shoulder arthroplasty, recurrent shoulder instability and orthopedic shoulder traumatology. In shoulder arthroplasty, several authors have shown that the use of the 3D printer improves the positioning of the glenoid component, even if longer clinical follow-up is needed to determine whether the cost of this system rationalizes the potential improved functional outcomes and decreases glenoid revision rates. In the treatment of anterior shoulder instability, the literature agrees on the fact that the use of the 3D printing can: enhance the dept and size of bony lesions, allowing a patient tailored surgical planning and potentially reducing operative times; allow the production of personalized implants to restore substantial bone loss; restore glenohumeral morphology and instability. In orthopedic trauma, the use of 3D printing can be helpful to increase the understanding of fracture patterns, facilitating a more personalized planning, and can be used for resident training and education. We can conclude the current literature regarding the use of 3D printed models in orthopedic surgery agrees finding objective improvements to preoperative planning and to the surgical procedure itself, by shortening the intraoperative time and by the possibility to develop custom-made, patient-specific surgical instruments, and it suggests that there are tangible benefits for its implementation.

2021 ◽  
Vol 4 (3) ◽  
pp. 54
Author(s):  
Athanasios Argyropoulos ◽  
Pantelis N. Botsaris

Three-dimensional (3D) printing is a leading manufacturing technique in the medical field. The constantly improving quality of 3D printers has revolutionized the approach to new challenges in medicine for a wide range of applications including otoplasty, medical devices, and tissue engineering. The aim of this study is to provide a comprehensive overview of an artificial ear splint model applied to the human auricle for the treatment of stick-out protruding ears. The deformity of stick-out protruding ears remains a significant challenge, where the complex and distinctive shape preservation are key factors. To address this challenge, we have developed a protocol that involves photogrammetry techniques, reverse engineering technologies, a smart prototype design, and 3D printing processes. Specifically, we fabricated a 3D printed ear splint model via fused deposition modelling (FDM) technology by testing two materials, a thermoplastic polyester elastomer material (Z-Flex) and polycaprolactone (PCL 100). Our strategy affords a custom-made and patient-specific artificial ear aligner with mechanical properties that ensures sufficient preservation of the auricular shape by applying a force on the helix and antihelix and enables the ears to pin back to the head.


2018 ◽  
Vol 11 (2) ◽  
pp. 140-148 ◽  
Author(s):  
Alessandro Castagna ◽  
Raffaele Garofalo

Anatomic total shoulder arthroplasty (TSR) has been shown to generate good to excellent results for patients with osteoarthritis and a functioning rotator cuff. Many studies have reported that the glenoid component loosening and failure remain the most common long-term complication of total shoulder arthroplasty. The approach to glenoid component is critical because a surgeon should consider patient-specific anatomy, preserving bone stock and joint line restoration, for a good and durable shoulder function. Over the years, different glenoid design and materials have been tried in various configurations. These include cemented polyethylene, uncemented metal-backed and hybrid implants. Although advances in biomechanics, design and tribology have improved our understanding of the glenoid, the journey of the glenoid component in anatomic total shoulder arthroplasty has not yet reached its final destination. This article attempts to describe the evolution of the glenoid component in anatomic TSR and current practice.


2021 ◽  
Vol 67 (2) ◽  
pp. 77-85
Author(s):  
Flaviu Moldovan ◽  
Tiberiu Bataga

Abstract Background: Three-dimensional (3D) technologies have numerous medical applications and have gained a lot of interest in medical world. After the advent of three-dimensional printing technology, and especially in last decade, orthopedic surgeons began to apply this innovative technology in almost all areas of orthopedic traumatic surgery. Objective: The aim of this paper is to give an overview of 3D technologies current usage in orthopedic surgery for patient specific applications. Methods: Two major databases PubMed and Web of Science were explored for content description and applications of 3D technologies in orthopedic surgery. It was considered papers presenting controlled studies and series of cases that include descriptions of 3D technologies compatible with applications to human medical purposes. Results: First it is presented the available three-dimensional technologies that can be used in orthopedic surgery as well as methods of integration in order to achieve the desired medical application for patient specific orthopedics. Technology starts with medical images acquisition, followed by design, numerical simulation, and printing. Then it is described the state of the art clinical applications of 3D technologies in orthopedics, by selecting the latest reported articles in medical literature. It is focused on preoperative visualization and planning, trauma, injuries, elective orthopedic surgery, guides and customized surgical instrumentation, implants, orthopedic fixators, orthoses and prostheses. Conclusion: The new 3D digital technologies are revolutionizing orthopedic clinical practices. The vast potential of 3D technologies is increasingly used in clinical practice. These technologies provide useful tools for clinical environment: accurate preoperative planning for cases of complex trauma and elective cases, personalized surgical instruments and personalized implants. There is a need to further explore the vast potential of 3D technologies in many other areas of orthopedics and to accommodate healthcare professionals with these technologies, as well as to study their effectiveness compared to conventional methods.


2019 ◽  
Vol 25 (2) ◽  
pp. 9-18 ◽  
Author(s):  
A. A. Cherny ◽  
A. N. Kovalenko ◽  
S. S. Bilyk ◽  
A. O. Denisov ◽  
A. V. Kazemirskiy ◽  
...  

The aim of this study was the assessment of early outcomes of patient-specific three-dimensional titanium cones with specified porosity parameters to compensate for extensive metaphysical-diaphyseal bone defects in RTKA.Materials and Methods. Since 2017 till 2019 30 patient-specific titanium cones (12 femoral and 18 tibial) implanted during 26 RTKAS. Clinical outcomes evaluated using KSS, WOMAC and fjS-12 scoring systems on average 10 (2–18) months after surgery. At the same time the stability of implant fixation analyzed using frontal, lateral and axial knee roentgenograms.Results. During all procedures there were no technical difficulties in positioning and implantation of custom-made titanium cones. At the time of preparation of the publication, none of the patients had indications for further surgical intervention, as well as intra- and postoperative complications. Six months after surgery all scores improved significantly: KSS from 23 (2–42, SD 19.96) to 66.5 (62–78, SD 7.68), WOMAC from 59 (56–96, SD 28.31) to 32.25 (19–46, SD 11.76), the index FJS-12 was 29.16 points (0–68.75, SD 30.19). The average scores continued to improve up to 18 months: KSS — 97.5 (88–108, SD 9.14), WOMAC — 16.5 (9–24, SD 6.45), FJS-12 — 45.85 (25–75, SD 22.03). No radiolucent lines were noticed during this period of observation.Conclusion. The original additive technology of designing and producing patient-specific titanium cones for compensation of extensive metaphyseal-diaphyseal bone defects in RTKA is a valid solution at least in the short term. A longer follow-up period is required to assess its medium-and long-term reliability compared to existing alternative surgical solutions.


Author(s):  
K. G. Siree ◽  
T. M. Amulya ◽  
T. M. Pramod Kumar ◽  
S. Sowmya ◽  
K. Divith ◽  
...  

Three-dimensional (3D) printing is a unique technique that allows for a high degree of customisation in pharmacy, dentistry and in designing of medical devices. 3D printing satiates the increasing exigency for consumer personalisation in these fields as custom-made medicines catering to the patients’ requirements are novel advancements in drug therapy. Current research in 3D printing indicates towards reproducing an organ in the form of a chip; paving the way for more studies and opportunities to perfecting the existing technique. In addition, we will also attempt to shed light on the impact of 3D printing in the COVID-19 pandemic.


2012 ◽  
Vol 94 (23) ◽  
pp. 2167-2175 ◽  
Author(s):  
Michael D. Hendel ◽  
Jason A. Bryan ◽  
Wael K. Barsoum ◽  
Eric J. Rodriguez ◽  
John J. Brems ◽  
...  

Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


2018 ◽  
Vol 9 (4) ◽  
pp. 454-458 ◽  
Author(s):  
Sarah A. Chen ◽  
Chin Siang Ong ◽  
Nagina Malguria ◽  
Luca A. Vricella ◽  
Juan R. Garcia ◽  
...  

Purpose: Patients with hypoplastic left heart syndrome (HLHS) present a diverse spectrum of aortic arch morphology. Suboptimal geometry of the reconstructed aortic arch may result from inappropriate size and shape of an implanted patch and may be associated with poor outcomes. Meanwhile, advances in diagnostic imaging, computer-aided design, and three-dimensional (3D) printing technology have enabled the creation of 3D models. The purpose of this study is to create a surgical simulation and training model for aortic arch reconstruction. Description: Specialized segmentation software was used to isolate aortic arch anatomy from HLHS computed tomography scan images to create digital 3D models. Three-dimensional modeling software was used to modify the exported segmented models and digitally design printable customized patches that were optimally sized for arch reconstruction. Evaluation: Life-sized models of HLHS aortic arch anatomy and a digitally derived customized patch were 3D printed to allow simulation of surgical suturing and reconstruction. The patient-specific customized patch was successfully used for surgical simulation. Conclusions: Feasibility of digital design and 3D printing of patient-specific patches for aortic arch reconstruction has been demonstrated. The technology facilitates surgical simulation. Surgical training that leads to an understanding of optimal aortic patch geometry is one element that may potentially influence outcomes for patients with HLHS.


Sign in / Sign up

Export Citation Format

Share Document