scholarly journals Simultaneous detection of LipL32 and LipL21 genes of pathogenic leptospira from serum samples of bovines by multiplex PCR

2011 ◽  
Vol 1 (1) ◽  
pp. 15
Author(s):  
Timiri V. Meenambigai ◽  
Gopalakrishnan Ravikumar ◽  
Andy Srithar ◽  
Govindan Balakrishnan ◽  
Chidambaram Saranya ◽  
...  

<p>Leptospirosis is a worldwide zoonotic disease of cattle associated with pathogenic leptospiral infection. This study focuses in the use of a molecular tool to detect pathogenic leptospiral infection in bovines by targeting the outer membrane proteins LipL32 and LipL21 simultaneously in a multiplex PCR. Sixteen pathogenic reference strains and 10 bovine serum samples were analyzed for simultaneous detection of both genes at appropriate annealing conditions. These findings are suggestive of the fact that multiplex PCR can be used to detect major outer membrane proteins of pathogenic leptospira from serum samples. Further it aided in the differentiation of pathogenic and non-pathogenic species of leptospires too. This study will definitely serve as a valuable tool, as it suggests the importance of <em>LipL32</em> genes as potential candidates for vaccine development to control animal Leptospirosis.</p>

2015 ◽  
Vol 9 (12) ◽  
pp. e0004286 ◽  
Author(s):  
Leandro C. D. Breda ◽  
Ching-Lin Hsieh ◽  
Mónica M. Castiblanco Valencia ◽  
Ludmila B. da Silva ◽  
Angela S. Barbosa ◽  
...  

2015 ◽  
Vol 9 (10) ◽  
pp. e0004192 ◽  
Author(s):  
Leandro C. D. Breda ◽  
Ching-Lin Hsieh ◽  
Mónica M. Castiblanco Valencia ◽  
Ludmila B. da Silva ◽  
Angela S. Barbosa ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Henju Marjuki ◽  
Nadav Topaz ◽  
Sandeep J. Joseph ◽  
Kim M. Gernert ◽  
Ellen N. Kersh ◽  
...  

ABSTRACT The human pathogens Neisseria gonorrhoeae and Neisseria meningitidis share high genome identity. Retrospective analysis of surveillance data from New Zealand indicates the potential cross-protective effect of outer membrane vesicle (OMV) meningococcal serogroup B vaccine (MeNZB) against N. gonorrhoeae. A licensed OMV-based MenB vaccine, MenB-4C, consists of a recombinant FHbp, NhbA, NadA, and the MeNZB OMV. Previous work has identified several abundantly expressed outer membrane proteins (OMPs) as major components of the MenB-4C OMV with high sequence similarity between N. gonorrhoeae and N. meningitidis, suggesting a mechanism for cross-protection. To build off these findings, we performed comparative genomic analysis on 970 recent N. gonorrhoeae isolates collected through a U.S surveillance system against N. meningitidis serogroup B (NmB) reference sequences. We identified 1,525 proteins that were common to both Neisseria species, of which 57 proteins were predicted to be OMPs using in silico methods. Among the MenB-4C antigens, NhbA showed moderate sequence identity (73%) to the respective gonococcal homolog, was highly conserved within N. gonorrhoeae, and was predicted to be surface expressed. In contrast, the gonococcal FHbp was predicted not to be surface expressed, while NadA was absent in all N. gonorrhoeae isolates. Our work confirmed recent observations (E. A. Semchenko, A. Tan, R. Borrow, and K. L. Seib, Clin Infect Dis, 2018, https://doi.org/10.1093/cid/ciy1061) and describes homologous OMPs from a large panel of epidemiologically relevant N. gonorrhoeae strains in the United States against NmB reference strains. Based on our results, we report a set of OMPs that may contribute to the previously observed cross-protection and provide potential antigen targets to guide the next steps in gonorrhea vaccine development. IMPORTANCE Gonorrhea, a sexually transmitted disease, causes substantial global morbidity and economic burden. New prevention and control measures for this disease are urgently needed, as strains resistant to almost all classes of antibiotics available for treatment have emerged. Previous reports demonstrate that cross-protection from gonococcal infections may be conferred by meningococcal serogroup B (MenB) outer membrane vesicle (OMV)-based vaccines. Among 1,525 common proteins shared across the genomes of both N. gonorrhoeae and N. meningitidis, 57 proteins were predicted to be surface expressed (outer membrane proteins [OMPs]) and thus preferred targets for vaccine development. The majority of these OMPs showed high sequence identity between the 2 bacterial species. Our results provide valuable insight into the meningococcal antigens present in the current OMV-containing MenB-4C vaccine that may contribute to cross-protection against gonorrhea and may inform next steps in gonorrhea vaccine development.


2005 ◽  
Vol 73 (12) ◽  
pp. 8109-8118 ◽  
Author(s):  
Job E. Lopez ◽  
William F. Siems ◽  
Guy H. Palmer ◽  
Kelly A. Brayton ◽  
Travis C. McGuire ◽  
...  

ABSTRACT Immunization with purified Anaplasma marginale outer membranes induces complete protection against infection that is associated with CD4+ T-lymphocyte-mediated gamma interferon secretion and immunoglobulin G2 (IgG2) antibody titers. However, knowledge of the composition of the outer membrane immunogen is limited. Recent sequencing and annotation of the A. marginale genome predicts at least 62 outer membrane proteins (OMP), enabling a proteomic and genomic approach for identification of novel OMP by use of IgG serum antibody from outer membrane vaccinates. Outer membrane proteins were separated by two-dimensional electrophoresis, and proteins recognized by total IgG and IgG2 in immune sera of outer membrane-vaccinated cattle were detected by immunoblotting. Immunoreactive protein spots were excised and subjected to liquid chromatography-tandem mass spectrometry. A database search of the A. marginale genome identified 24 antigenic proteins that were predicted to be outer membrane, inner membrane, or membrane-associated proteins. These included the previously characterized surface-exposed outer membrane proteins MSP2, operon associated gene 2 (OpAG2), MSP3, and MSP5 as well as recently identified appendage-associated proteins. Among the 21 newly described antigenic proteins, 14 are annotated in the A. marginale genome and include type IV secretion system proteins, elongation factor Tu, and members of the MSP2 superfamily. The identification of these novel antigenic proteins markedly expands current understanding of the composition of the protective immunogen and provides new candidates for vaccine development.


2006 ◽  
Vol 53 (3) ◽  
pp. 445-456 ◽  
Author(s):  
Kristian Riesbeck ◽  
Thuan Tong Tan ◽  
Arne Forsgren

Moraxella catarrhalis IgD-binding protein MID is a 200 kDa autotransporter protein that exists as a oligomer and is governed at the transcriptional level. The majority of M. catarrhalis clinical isolates expresses MID. Two functional domains have been attributed to MID; MID764-913 functions as an adhesin and promotes the bacteria to attach to epithelial cells, whereas the IgD-binding domain is located within MID962-1200. In parallel, MID is stimulatory for B lymphocytes through the IgD B cell receptor. M. catarrhalis ubiquitous surface proteins A1 and A2 (UspA1/A2) are multifunctional outer membrane proteins that can bind complement and extracellular matrix proteins such as vitronectin and fibronectin. An interaction between the complement fluid phase regulator of the classical pathway, C4b binding protein (C4BP), and UspA1/A2 has also been observed. Moreover, UspA1/A2 has a unique feature to interfere with the innate immune system of complement by binding C3. Taken together, a growing body of knowledge on M. catarrhalis outer membrane proteins MID and UspA1/A2 and their precise interactions with the human host make them promising vaccine candidates in a future multicomponent vaccine.


2013 ◽  
Vol 20 (5) ◽  
pp. 651-656 ◽  
Author(s):  
Susan M. Noh ◽  
Joshua E. Turse ◽  
Wendy C. Brown ◽  
Junzo Norimine ◽  
Guy H. Palmer

ABSTRACTThe prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective, they are difficult and expensive to isolate and standardize and thus are often impractical for development and implementation in vaccination programs. In contrast, individual proteins, which are easily adapted for use in subunit vaccines, tend to be poorly protective. Consequently, identification of the specific characteristics of outer membrane-based immunogens, in terms of the antigen contents and contexts that are required for protective immunity, represents a major gap in the knowledge needed for bacterial vaccine development. Using as a modelAnaplasma marginale, a persistent tick-borne bacterial pathogen of cattle, we tested two sets of immunogens to determine whether membrane context affected immunogenicity and the capacity to induce protection. The first immunogen was composed of a complex of outer membrane proteins linked by covalent bonds and known to be protective. The second immunogen was derived directly from the first one, but the proteins were individualized rather than linked. The antibody response induced by the linked immunogen was much greater than that induced by the unlinked immunogen. However, both immunogens induced protective immunity and an anamnestic response. These findings suggest that individual proteins or combinations of proteins can be successfully tested for the ability to induce protective immunity with less regard for overall membrane context. Once protective antigens are identified, immunogenicity could be enhanced by cross-linking to allow a reduced immunogen dose or fewer booster vaccinations.


1991 ◽  
Vol 5 (3) ◽  
pp. 727-736 ◽  
Author(s):  
M. C. J. Maiden ◽  
J. Suker ◽  
A. J. McKenna ◽  
J. A. Bygraves ◽  
I. M. Feavers

Sign in / Sign up

Export Citation Format

Share Document