scholarly journals Iceberg scour data maps for the grand banks of Newfoundland between 46 degrees north and 48 degrees north

1982 ◽  
Author(s):  
S J d'Apollonia ◽  
C F M Lewis
Keyword(s):  
1994 ◽  
Vol 2 (1) ◽  
pp. 16-32 ◽  
Author(s):  
K.H. Mann ◽  
K.F. Drinkwater

Evidence is reviewed, linking physical oceanographic processes in the marine environment to changes in fish and shellfish stocks in the Northwest Atlantic. A case history study of the cod (Gadus morhua) stock of the northern Grand Banks and Labrador Shelf indicates a long slow amelioration of the environment between about 1945 and 1965, followed by a deterioration in the period 1965–1992. The most important environmental factors for the cod stocks appear to have been salinity and temperature. The trends can be traced back to climatic factors involving the Icelandic Low and the Azores–Bermuda High. When the atmospheric pressure difference in winter tended to be high, there was a progressive increase in the area of sea ice off Labrador and in the volume of cold water at depth. These factors have been shown to affect temperature and salinity conditions on the Grand Banks in spring and summer and are associated with poor growth and recruitment in the cod stocks. A similar case study of lobster (Homarus americanus) stocks indicates that temperature and river discharge are important environmental correlates, but neither can be shown to fully account for the recent trends in the stocks. Evidence is reviewed to show that physical environmental processes also influence recruitment and distribution of stocks of haddock, capelin, and squid. Some of the problems with correlational analysis are also discussed. It is recognized that factors other than the environment are influencing the stocks. Fishing mortality (detailed consideration of which is not included in this review) has clearly been important. Interactions between environmental factors and fishing mortality are probably of major importance.Key words: ocean environment, fish production, recruitment, northern cod, American lobster.


2007 ◽  
Vol 200 (3-4) ◽  
pp. 336-346 ◽  
Author(s):  
Andrew L. Moore ◽  
Brian G. McAdoo ◽  
Alan Ruffman

2004 ◽  
Vol 41 (4) ◽  
pp. 401-429 ◽  
Author(s):  
Iftikhar A Abid ◽  
Reinhard Hesse ◽  
John D Harper

Mixed-layer illite/smectite (I/S) clays were analyzed from 22 deep exploration wells from the Jeanne d'Arc Basin on the Grand Banks offshore Newfoundland, the host of large commercial hydrocarbon accumulations discovered in the last two and a half decades. The fine fraction of the clays (<0.1 µm) consists mainly of mixed-layer I/S with minor amounts of kaolinite, illite, and chlorite. Smectite and (or) smectite-rich I/S clays were supplied to the Jeanne d'Arc Basin from Upper Jurassic to Tertiary times. Smectite-rich I/S clays occur only in shallow samples irrespective of geologic age. The proportion of illite in I/S mixed-layers, as well as the degree of ordering, increase with depth and temperature indicating that smectite-rich I/S clays have been progressively illitized in both rift and post-rift sediments of the Jeanne d'Arc Basin during burial. The transition from random to R1-ordered I/S occurs between subsurface depths of 1940 and 3720 m and crosses major stratigraphic boundaries. The transition from R1- to R3-ordered I/S generally occurs below 4000 m depth. Variable shapes of I/S depth profiles reflect the influence of temperature, fluid migration, subsidence history, basin structure, lithology, and salt diapirism on I/S diagenesis. Based on these variations, the basin can be subdivided into 4 regions with different illitization gradients. In the Southern Jeanne d'Ac Basin, advanced I/S diagenesis probably reflects uplift and denudation and (or) higher paleogeothermal gradients. Rapid increase of percent illite in I/S with depth in the Trans-Basinal Fault area is most likely controlled by upward flow of hot, K+-bearing fluids along faults. The migration of hydrocarbons probably followed the same pathways as the illitizing fluids. Delayed illitization in the Northern Jeanne d'Arc Basin and Central Ridge area reflects insufficient K+ supply because of a lack of detrital K-feldspar in the host sediment, the absence of faulting, and the presence of thick shale intervals. These findings show that I/S depth profiles may vary within the same sedimentary basin due to a variety of geological factors. Single wells generally cannot be considered representative for the basin as a whole.


2010 ◽  
Vol 68 (2) ◽  
pp. 319-332 ◽  
Author(s):  
F. J. Murillo ◽  
P. Durán Muñoz ◽  
A. Altuna ◽  
A. Serrano

Abstract Murillo, F. J., Durán Muñoz, P., Altuna, A., and Serrano, A. 2011. Distribution of deep-water corals of the Flemish Cap, Flemish Pass, and the Grand Banks of Newfoundland (Northwest Atlantic Ocean): interaction with fishing activities. – ICES Journal of Marine Science, 68: 319–332. The distribution of deep-water corals of the Flemish Cap, Flemish Pass, and the Grand Banks of Newfoundland is described based on bycatch from Spanish/EU bottom trawl groundfish surveys between 40 and 1500 m depth. In all, 37 taxa of deep-water corals were identified in the study area: 21 alcyonaceans (including the gorgonians), 11 pennatulaceans, 2 solitary scleractinians, and 3 antipatharians. The greatest diversity of coral species was on the Flemish Cap. Corals were most abundant along the continental slope, between 600 and 1300 m depth. Soft corals (alcyonaceans), sea fans (gorgonians), and black corals (antipatharians) were most common on bedrock or gravel, whereas sea pens (pennatulaceans) and cup corals (solitary scleractinians) were found primarily on mud. The biomass of deep-water corals in the bycatches was highest in previously lightly trawled or untrawled areas, and generally low in the regularly fished grounds. The information derived from bottom-trawl bycatch records is not sufficient to map vulnerable marine ecosystems (VMEs) accurately, but pending more detailed habitat mapping, it provides a valuable indication of the presence/absence of VMEs that can be used to propose the candidate areas for bottom fishery closures or other conservation measures.


1996 ◽  
Vol 26 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Rosanne D. D'arrigo ◽  
Edward R. Cook ◽  
Gordon C. Jacoby

Temperature-sensitive maximum latewood density chronologies from sites near tree line in Labrador are used to infer past changes in warm-season surface air and sea surface temperatures for the northwest Atlantic. Temperatures are reconstructed for the Grand Banks region based on density records from southern Labrador, while a density series from near Okak Fiord, northern Labrador, is used to infer past temperature variations for north-coastal Labrador and the adjacent Labrador Sea. The Labrador chronologies show good agreement with annual and decadal-scale temperature fluctuations over the recent period of instrumental record, and extend this temperature information into the past by several centuries. The lowest density value at the Okak site occurs in 1816, known as the "year without a summer" in eastern North America. Spectral analyses reveal statistically significant variations with periods of around 8.7, 18–22, and 45–66 years. These fluctuations are in general agreement with those identified in several instrumental and modeling analyses of North Atlantic climate.


2009 ◽  
Vol 66 (3) ◽  
pp. 407-417
Author(s):  
Christopher Lawrence
Keyword(s):  

Author(s):  
David R. Tappin

Most tsunamis are generated by earthquakes, but in 1998, a seabed slump offshore of northern Papua New Guinea (PNG) generated a tsunami up to 15 m high that killed more than 2,200 people. The event changed our understanding of tsunami mechanisms and was forerunner to two decades of major tsunamis that included those in Turkey, the Indian Ocean, Japan, and Sulawesi and Anak Krakatau in Indonesia. PNG provided a context to better understand these tsunamis as well as older submarine landslide events, such as Storegga (8150 BP); Alika 2 in Hawaii (120,000 BP), and Grand Banks, Canada (1929), together with those from dual earthquake/landslide mechanisms, such as Messina (1908), Puerto Rico (1928), and Japan (2011). PNG proved that submarine landslides generate devastating tsunamis from failure mechanisms that can be very different, whether singly or in combination with earthquakes. It demonstrated the critical importance of seabed mapping to identify these mechanisms as well as stimulated the development of new numerical tsunami modeling methodologies. In combination with other recent tsunamis, PNG demonstrated the critical importance of these events in advancing our understanding of tsunami hazard and risk. This review recounts how, since 1998, understanding of the tsunami hazard from submarine landslides has progressed far beyond anything considered possible at that time. ▪ For submarine landslide tsunamis, advances in understanding take place incrementally, usually in response to major, sometimes catastrophic, events. ▪ The Papua New Guinea tsunami in 1998, when more than 2,200 people perished, was a turning point in first recognizing the significant tsunami hazard from submarine landslides. ▪ Over the past 2 to 3 years advances have also been made mainly because of improvements in numerical modeling based on older tsunamis such as Grand Banks in 1929, Messina in 1908, and Storegga at 8150 BP. ▪ Two recent tsunamis in late 2018, in Sulawesi and Anak Krakatau, Indonesia, where several hundred people died, were from very unusual landslide mechanisms—dual (strike-slip and landslide) and volcanic collapse—and provide new motivations for understanding these tsunami mechanisms. ▪ This is a timely, state of the art review of landslide tsunamis based on recent well-studied events and new research on older ones, which provide an important context for the recent tsunamis in Indonesia in 2018. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2012 ◽  
Vol 55 ◽  
pp. 125-144 ◽  
Author(s):  
Lorna D. Linch ◽  
Jaap J.M. van der Meer ◽  
John Menzies

Sign in / Sign up

Export Citation Format

Share Document