scholarly journals Activated platelets induce hypoxia-inducible factor-1α expression likely through transforming growth factor-β1 in human endometrial stromal cells

2019 ◽  
Vol 3 (2) ◽  
pp. 69 ◽  
Author(s):  
Xi-Shi Liu ◽  
Qiu-Ming Qi ◽  
Sun-Wei Guo
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Xianglin Hu ◽  
Zhengwang Sun ◽  
Fengfeng Li ◽  
Chaoyin Jiang ◽  
Wangjun Yan ◽  
...  

AbstractBurn injury is one of the potential causes of heterotopic ossification (HO), which is a rare but debilitating condition. The incidence ranges from 3.5 to 5.6 depending on body area. Burns that cover a larger percentage of the total body surface area (TBSA), require skin graft surgeries, or necessitate pulmonary intensive care are well-researched risk factors for HO. Since burns initiate such complex pathophysiological processes with a variety of molecular signal changes, it is essential to focus on HO in the specific context of burn injury to define best practices for its treatment. There are numerous key players in the pathways of burn-induced HO, including neutrophils, monocytes, transforming growth factor-β1-expressing macrophages and the adaptive immune system. The increased inflammation associated with burn injuries is also associated with pathway activation. Neurological and calcium-related contributions are also known. Endothelial-to-mesenchymal transition (EMT) and vascularization are known to play key roles in burn-induced HO, with hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) as potential initiators. Currently, non-steroidal anti-inflammatory drugs (NSAIDs) and radiotherapy are effective prophylaxes for HO. Limited joint motion, ankylosis and intolerable pain caused by burn-induced HO can be effectively tackled via surgery. Effective biomarkers for monitoring burn-induced HO occurrence and bio-prophylactic and bio-therapeutic strategies should be actively developed in the future.


Sign in / Sign up

Export Citation Format

Share Document