scholarly journals Evaluation of Genotype MTBDRplus Line Probe Assay in Detection of Rifampicin and Isoniazid Resistance in Comparison to Solid Culture Drug Susceptibility Testing in a Tertiary Care Centre of Western Uttar Pradesh

2017 ◽  
Vol 35 (4) ◽  
pp. 568-574 ◽  
Author(s):  
Shariq Ahmed ◽  
Indu Shukla ◽  
Nazish Fatima ◽  
Sumit K. Varshney ◽  
Mohammad Shameem
Author(s):  
Rajani Ranganath ◽  
Hemant Deepak Shewade ◽  
Abdul K Bahadur ◽  
Venkatesh Naik ◽  
Sharath Burugina Nagaraja ◽  
...  

Abstract Background India implements universal drug susceptibility testing (UDST) using rapid genotypic tests (cartridge-based nucleic acid amplification test CBNAAT - and line probe assay - LPA). to bridge the gap of diagnosis of multidrug/rifampicin-resistant TB. There is limited evidence assessing the implementation of UDST in India. We assessed the implementation among people with pulmonary TB notified from public facilities in October 2019 from Raichur (Karnataka), India. Methods A cohort study involving secondary data in routine programme settings was conducted. All people with TB underwent a rapid genotypic DST for rifampicin resistance followed by first line-LPA (FL-LPA) if sensitive and second line-LPA (SL-LPA) if resistant. Results Of 217 people, 15.7% (n=34) did not undergo rapid genotypic DST. Of 135 who were rifampicin-sensitive detected on CBNAAT, 68.1% (n=92) underwent FL-LPA, and out of the six rifampicin-resistant cases, 66.7% (n=4) underwent SL-LPA. Overall, 65.4% (142/217) completed the UDST algorithm. Children (aged <15 y) and people with bacteriological non-confirmation on microscopy were less likely to undergo rapid genotypic DST. Of 183 patients who underwent both rapid genotypic DST and sputum smear microscopy, 150 were bacteriologically confirmed and, of them, 9 (6%) were ‘rapid DST-negative’. Conclusion We found gaps at various steps. There were a significant number of ‘rapid DST-negative, smear-positive’ patients.


2019 ◽  
Vol 147 ◽  
Author(s):  
R. S. Salvato ◽  
S. Schiefelbein ◽  
R. B. Barcellos ◽  
B. M. Praetzel ◽  
I. S. Anusca ◽  
...  

AbstractTuberculosis (TB) is the leading cause of death among infectious diseases worldwide. Among the estimated cases of drug-resistant TB, approximately 60% occur in the BRICS countries (Brazil, Russia, India, China and South Africa). Among Brazilian states, primary and acquired multidrug-resistant TB (MDR-TB) rates were the highest in Rio Grande do Sul (RS). This study aimed to perform molecular characterisation of MDR-TB in the State of RS, a high-burden Brazilian state. We performed molecular characterisation of MDR-TB cases in RS, defined by drug susceptibility testing, using 131Mycobacterium tuberculosis (M.tb)DNA samples from the Central Laboratory. We carried out MIRU-VNTR 24loci, spoligotyping, sequencing of thekatG,inhA andrpoB genes and RDRiosublineage identification. The most frequent families found were LAM (65.6%) and Haarlem (22.1%). RDRiodeletion was observed in 42 (32%) of theM.tbisolates. Among MDR-TB cases, eight (6.1%) did not present mutations in the studied genes. In 116 (88.5%)M.tbisolates, we found mutations associated with rifampicin (RIF) resistance inrpoB gene, and in 112 isolates (85.5%), we observed mutations related to isoniazid resistance inkatG andinhA genes. An insertion of 12 nucleotides (CCAGAACAACCC) at the 516 codon in therpoB gene, possibly responsible for a decreased interaction of RIF and RNA polymerase, was found in 19/131 of the isolates, belonging mostly to LAM and Haarlem families. These results enable a better understanding of the dynamics of transmission and evolution of MDR-TB in the region.


2019 ◽  
Vol 45 (2) ◽  
Author(s):  
Angela Pires Brandao ◽  
Juliana Maira Watanabe Pinhata ◽  
Rosangela Siqueira Oliveira ◽  
Vera Maria Neder Galesi ◽  
Helio Hehl Caiaffa-Filho ◽  
...  

ABSTRACT Objective: To evaluate the rapid diagnosis of multidrug-resistant tuberculosis, by using a commercial line probe assay for rifampicin and isoniazid detection (LPA-plus), in the routine workflow of a tuberculosis reference laboratory. Methods: The LPA-plus was prospectively evaluated on 341 isolates concurrently submitted to the automated liquid drug susceptibility testing system. Results: Among 303 phenotypically valid results, none was genotypically rifampicin false-susceptible (13/13; 100% sensitivity). Two rifampicin-susceptible isolates harboured rpoB mutations (288/290; 99.3% specificity) which, however, were non-resistance-conferring mutations. LPA-plus missed three isoniazid-resistant isolates (23/26; 88.5% sensitivity) and detected all isoniazid-susceptible isolates (277/277; 100% specificity). Among the 38 (11%) invalid phenotypic results, LPA-plus identified 31 rifampicin- and isoniazid-susceptible isolates, one isoniazid-resistant and six as non-Mycobacterium tuberculosis complex. Conclusions: LPA-plus showed excellent agreement (≥91%) and accuracy (≥99%). Implementing LPA-plus in our setting can speed up the diagnosis of multidrug-resistant tuberculosis, yield a significantly higher number of valid results than phenotypic drug susceptibility testing and provide further information on the drug-resistance level.


2018 ◽  
Vol 56 (6) ◽  
pp. e00072-18 ◽  
Author(s):  
Doris Hillemann ◽  
Carsten Haasis ◽  
Sönke Andres ◽  
Tobias Behn ◽  
Katharina Kranzer

ABSTRACT For Mycobacterium tuberculosis complex (MTBC), the rapid and accurate diagnosis of drug resistance is crucial to ensure early initiation of appropriate therapy. Recently, a new molecular diagnostic test, the FluoroType MTBDR, aimed at detecting rifampin and isoniazid resistance has become available. This study aimed to evaluate the FluoroType MTBDR in comparison to phenotypic drug susceptibility testing (DST) using M. tuberculosis complex isolates. MTBC isolates underwent phenotypic DST and were tested using the FluoroType MTBDR and Genotype MTBDRplus. Sanger sequencing of the key regions of rpoB, katG, inhA, and aphC was performed for isolates with discordant phenotypic and molecular results. Furthermore, isolates with specific wild-type bands missing in the Genotype MTBDRplus, indicating the presence of a mutation, were investigated by Sanger sequencing. Specificity and sensitivity, defined as the proportions of isolates correctly determined as susceptible and resistant by the FluoroType MTBDR compared to phenotypic DST, were calculated. A total of 180 culture isolates were included; phenotypic DST showed 85 isolates susceptible to isoniazid and rifampin, 7 with isoniazid monoresistance, 7 with rifampin monoresistance, and 81 with multidrug resistance. The specificity of the FluoroType MTBDR was 100% (95% confidence interval [CI], 96.0 to 100%) for both rifampin and isoniazid. The sensitivity was 91.7% (95% CI, 83.6 to 96.6%) for isoniazid and 98.9% (95% CI, 93.8 to 100.0%) for rifampin. The FluoroType MTBDR has a high sensitivity and specificity for the detection of rifampin and isoniazid resistance when using culture isolates.


Sign in / Sign up

Export Citation Format

Share Document