scholarly journals Color Laplacian and Color Signless Laplacian Energy of Complement of Subgroup Graph of Dihedral Group

Author(s):  
Abdussakir Abdussakir ◽  
Mohammad Jauhari ◽  
Nabila Umar ◽  
Lila Puspitasari
2020 ◽  
Vol 1597 ◽  
pp. 012031
Author(s):  
Kavita Permi ◽  
H S Manasa ◽  
M C Geetha

2017 ◽  
Vol 14 (2) ◽  
pp. 142-148 ◽  
Author(s):  
Pradeep G. Bhat ◽  
Sabitha D’Souza

2020 ◽  
Vol 42 ◽  
pp. e91
Author(s):  
João Roberto Lazzarin ◽  
Oscar Franscisco Másquez Sosa ◽  
Fernando Colman Tura

A graph G is said to be borderenergetic (L-borderenergetic, respectively) if its energy (Laplacian energy, respectively) equals the energy (Laplacian energy, respectively) of the complete graph. Recently, this concept was extend to signless Laplacian energy (see Tao, Q., Hou, Y. (2018). Q-borderenergetic graphs. AKCE International Journal of Graphs and Combinatorics). A graph G is called Q-borderenergetic if its signless Laplacian energy is the same of the complete graph Kn; i.e., QE(G) = QE(Kn) = 2n - 2: In this paper, we investigate Q-borderenergetic graphs on the class of threshold graphs. For a family of threshold graphs of order n = 100; we find out exactly 13 graphs such that QE(G) = 2n- 2:


MATEMATIKA ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 59-65
Author(s):  
Rabiha Mahmoud ◽  
Amira Fadina Ahmad Fadzil ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

Let G be a dihedral group and its conjugacy class graph. The Laplacian energy of the graph, is defined as the sum of the absolute values of the difference between the Laplacian eigenvalues and the ratio of twice the edges number divided by the vertices number. In this research, the Laplacian matrices of the conjugacy class graph of some dihedral groups, generalized quaternion groups, quasidihedral groups and their eigenvalues are first computed. Then, the Laplacian energy of the graphs are determined.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 892
Author(s):  
Obbu Ramesh ◽  
S. Sharief Basha

We are extending concept into the Intuitionistic fuzzy graph’ Signless Laplacian energy  instead of the Signless Laplacian energy of fuzzy graph. Now we demarcated an Intuitionistic fuzzy graph’s Signless adjacency matrix and also  an Intuitionistic fuzzy graph’s Signless Laplacian energy. Here we find the Signless Laplacian energy ‘s Intuitionistic fuzzy graphs above and below   boundaries of   an with suitable examples.   


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
S. R. Jog ◽  
Raju Kotambari

Coalescence as one of the operations on a pair of graphs is significant due to its simple form of chromatic polynomial. The adjacency matrix, Laplacian matrix, and signless Laplacian matrix are common matrices usually considered for discussion under spectral graph theory. In this paper, we compute adjacency, Laplacian, and signless Laplacian energy (Qenergy) of coalescence of pair of complete graphs. Also, as an application, we obtain the adjacency energy of subdivision graph and line graph of coalescence from itsQenergy.


2018 ◽  
Vol 544 ◽  
pp. 306-324 ◽  
Author(s):  
Hilal A. Ganie ◽  
Bilal A. Chat ◽  
S. Pirzada

Axioms ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 50 ◽  
Author(s):  
Sumera Naz ◽  
Muhammad Akram ◽  
Florentin Smarandache

A single-valued neutrosophic set is an instance of a neutrosophic set, which provides us an additional possibility to represent uncertainty, imprecise, incomplete and inconsistent information existing in real situations. In this research study, we present concepts of energy, Laplacian energy and signless Laplacian energy in single-valued neutrosophic graphs (SVNGs), describe some of their properties and develop relationship among them. We also consider practical examples to illustrate the applicability of the our proposed concepts.


Sign in / Sign up

Export Citation Format

Share Document