scholarly journals Automation of irrigation by electronic tensiometry based on the arduino hardware platform

Author(s):  
Rodrigo Moura Pereira ◽  
Delvio Sandri ◽  
Gervásio Fernando Alves Rios ◽  
Daniel Ataydes de Oliveira Sousa

This study developed and evaluated an electronic irrigation system controlled by soil water matric potential. The controller uses tensiometers and pressure transducers as a reading mechanism, integrated with an Arduino microcontroller board that drives the solenoid valves and a 1/3 hp single-phase motor. Four electronic tensiometers were installed in plastic containers filled with 6 kg of Red-Yellow Latosol (RYL) with a clayey texture, and another four in plastic containers filled with 7 kg of Regolitic Neosol (RN) with a sandy texture. Irrigation automation components were activated autonomously at the critical potentials of -20, -25, -30, and -35 kPa for RYL, and -10, -15, -20, and -25 kPa for RN, with a 20% variation tolerance. The entire system is able to monitor and control irrigation based on soil water matric potential. Components were deactivated when the soil water potential reached the field capacity of each soil type. Irrigation automation performance was considered satisfactory, as it kept critical potentials within the pre-established thresholds in both soil types. Automation control was set for matric potentials between -10 kPa and -35 kPa in RYL, and between -5 kPa and -25 kPa in RN.

1998 ◽  
Vol 25 (3) ◽  
pp. 353 ◽  
Author(s):  
C.R. Jensen ◽  
V.O. Mogensen ◽  
H.-H. Poulsen ◽  
I.E. Henson ◽  
S. Aagot ◽  
...  

Drought responses in leaves of lupin (Lupinus angustifolius L., cv. Polonez) were investigated in plants grown in lysimeters either in a sand or in a loam soil in the field. Abscisic acid (ABA) content, water potential (ψl) and conductance to water vapour (gH2O) were determined in leaves of both irrigated plants and in plants exposed to gradual soil drying. Amorning-peak of leaf ABA content was found in both fully watered and droughted plants. During soil drying which, on both soils types, only decreased soil water potential of the upper soil layers, mid-day leaf ABA content increased relative to that in fully irrigated plants before any appreciable decreases occurred in ψl. In the part of the soil profile from which water was taken up (0–60 cm depth), gH2O decreased when the relative available soil water content (RASW) on sand was below 12% and RASW on loam, below 30%. At this point the average soil water matric potential (ψsoil) on sand was less than –0.13 MPa and the fraction of roots in ‘wet’ soil was 0.12, while on loam, the fraction of roots in ‘wet’ soil was 0.44 while y soil was similar to that on sand. A critical leaf ABA content of 300–400 ng/g FW was associated with the onset of stomatal closure on both soil types. We suggest that the initial stomatal closure is controlled by ABA which originates from the roots where its production is closely related to ψsoiland the water potential of the root surface and that ψsoil is a more important parameter than RASW or the fraction of roots in ‘wet’ soil for affecting leaf gas exchange. Further drying on both soils led to further increases in leaf ABA and declines in ψl and gH2O. In order to gain further insight, experiments should be designed which combine signalling studies with simulation studies, which take account of soil water potential, root contact area and water flux when calculating the water status at the root surface in the soil-plant-atmosphere-continuum.


2010 ◽  
Vol 20 (3) ◽  
pp. 585-593 ◽  
Author(s):  
Ana Centeno ◽  
Pilar Baeza ◽  
José Ramón Lissarrague

Limited water supply in arid and semiarid Mediterranean environments demands improving irrigation efficiency. The purpose of this study was to determine a functional relationship between soil water availability and wine grape (Vitis vinifera) water status to determine a threshold value of soil matric potential to trigger irrigation. Seasonal trends of soil water potential, leaf water potential, and stomatal conductance (gS) of ‘Tempranillo’ wine grape were determined in two deficit irrigation treatments replenishing 45% and 30% of the reference evapotranspiration, and in a third non-irrigated treatment during 2001 and 2002. Soil water potential was measured with granular matrix soil moisture sensors placed at 0.3 m (Ψ0.3), 0.6 m (Ψ0.6), and 1.2 m (Ψ1.2) depths. The sensors at 0.3 m depth quickly responded to irrigation by increasing Ψ0.3 levels. At the 0.6 m depth, Ψ0.6 progressively decreased, showing significant differences between T1 and the rest of the treatments, while no significant differences in Ψ1.2 were found. All relationships between profile soil matric potential and leaf water potential and gS were highly correlated. After integrating our data with previous studies, we suggest a whole profile soil water potential value of –0.12 MPa as threshold to trigger irrigation and avoid severe water stress during berry growth.


2010 ◽  
Vol 56 (No. 7) ◽  
pp. 333-339 ◽  
Author(s):  
A.A.S. Sinegani ◽  
A. Mahohi

To better understand how water stress and availability affect the enzyme activity and microbial communities in soil, we measured the changes of organic carbon (OC), bacteria and fungi populations, and endoglucanase and exoglucanase activities in a semiarid soil treated with air-dried primary sewage sludge at a rate of 20 g/kg. The water potentials established for soil incubation were: saturation (SA, 0 bar), field capacity (FC, –0.3 bar), and permanent wilting point (PWP, –15 bar). An irrigation treatment was a drying-rewetting cycle (DWC) between –0.3 to –15 bars. After 0, 20, 60 and 90 days of incubation soils were sampled for analysis. The addition of sewage sludge increased soil OC, endoglucanase and exoglucanase activities significantly. The effects of soil moisture, incubation time and their interactions on OC, and endoglucanase and exoglucanase activities in soil were significant. During 20 days of incubation, OC, endoglucanase and exoglucanase activities decreased significantly. Soils incubated in DWC and FC compared to soils incubated in SA and PWP had lower OC contents due to organic matter mineralization. Organic C, exoglucanase and endoglucanase activities significantly increased with increasing soil water potential. The activities of exoglucanase and endoglucanase in soils incubated in SA were significantly higher than those in soils incubated in PWP.


2013 ◽  
Vol 33 (2) ◽  
pp. 269-278 ◽  
Author(s):  
Adão W. P. Evangelista ◽  
Luiz A. Lima ◽  
Antônio C. da Silva ◽  
Carla de P. Martins ◽  
Moisés S. Ribeiro

Irrigation management can be established, considering the soil water potential, as the limiting factor for plant growth, assuming the soil water content between the field capacity and the permanent wilting point as available water for crops. Thus, the aim of this study was to establish the soil water potential interval during four different phenological phases of coffee irrigated by center pivot. The experiment was set at the experimental area of the Engineering Department at the Federal University of Lavras, in Brazil. The coffee variety planted is designated as Rubi, planted 0.8 meters apart, with rows spaced 3.5 meters apart. The treatments corresponded to the water depths applied based on different percentages of Kc and reference evapotranspiration (ET0) values. Sensors were used to measure the soil water potential interval, installed 25 centimeters depth. In order to compare the results, it was considered as the best matric potential the one that was balanced with the soil water content that resulted in the largest coffee productivity. Based on the obtained results, we verified that in the phases of fruit expansion and ripening, the best results were obtained, before the irrigations, when the soil water potential values reached -35 and -38 kPa, respectively. And in the flowering, small green and fruit expansion phases, when the values reached -31 and -32 kPa, respectively.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 517e-517
Author(s):  
Jennifer Warner ◽  
Albert H. Markhart

Secondary compounds, essential oils, and flavor components of leaf tissue often increase in response to environmental stress. The objective of this study is to determine if a simple measure of soil matric potential could be used to generate mild plant water stress in sweet basil, which would improve the flavor components of the foliage. Sweet basil was grown in Universal Soil Mix with adequate water and fertilization in greenhouses supplied with 18 h of high-pressure sodium supplemental lighting until the third pair of leaves was fully expanded. Aquaprobe matric potential sensors were installed in the center of the pot and soil matric potentials recorded daily. Water was withheld from stressed plants until the soil water potential reached –4 bars. Treatments consisted of one or two stress cycles. Plants were harvested 24 h after rewatering and fresh and dry weights determined. The youngest two fully expanded leaves were placed in zip log bags and used in a taste test. The two water stress treatments decreased leaf fresh weight by 10% and 16%, respectively, decreased total plant dry weight by 6% and 10%, respectively, and had moderate effect on flavor intensity as rated by our taste test panel. The substantial decrease in yield suggests that –4 bars was too severe a stress to be used commercially. The Aquaprobe sensor was an easy to use economical way to monitor soil water and could be useful in regulating watering in a greenhouse environment.


1996 ◽  
Vol 74 (10) ◽  
pp. 1555-1561 ◽  
Author(s):  
Catherine Collet ◽  
Henri Frochot ◽  
Jean-Marc Guehl

Growth characteristics and water uptake were compared on two forest grass species (Agrostis stolonifera L. and Deschampsia cespitosa (L.) Beauv.) to evaluate their potential competitive effects on young forest seedlings. The two grass species were grown in large containers under two watering regimes (regular irrigation that maintained the soil at field capacity or seasonal water stress). Spring regrowth occurred earlier in Deschampsia than in Agrostis. During the summer, under irrigated conditions, Agrostis had higher values of leaf and tiller appearance rates than Deschampsia. Under water-stressed conditions, leaf and tiller appearance rates decreased sharply for both species during the desiccation period, and regrowth was much more pronounced in Agrostis than in Deschampsia after rewatering. Observations of the root systems indicated that Deschampsia developed deeper roots than Agrostis. Despite these differences, evapotranspiration in the irrigated and in the dry treatments were similar for both grasses. In the water-stressed treatments, soil water potential decreased rapidly under both grasses and was slightly lower in Agrostis than in Deschampsia. Although the two grasses had similar soil water uptake, differences in the overall competitive effect of the two grasses on forest tree seedlings might appear because of differences in their phenology, their recovery from drought, and the development of their root system. Keywords: Agrostis stolonifera L., Deschampsia cespitosa (L.) Beauv., leaf appearance rate, tiller appearance rate, tiller site-filling index, root growth, evapotranspiration.


1993 ◽  
Vol 29 (3) ◽  
pp. 351-364 ◽  
Author(s):  
J. K. Itabari ◽  
P. J. Gregory ◽  
R. K. Jones

SUMMARYThe effects of temperature and soil water potential on maize germination were investigated in controlled environment conditions and the effects of depth of planting and a mulch on maize emergence were studied in a field experiment in eastern Kenya. The rate of germination increased to an optimum temperature of 33.6°C above a base temperature of 6.1°C and decreased above the optimum to zero germination at 42.9°C. The thermal time for median germination increased from 51.5°Cd to 56.4°Cd as soil matric potential decreased from -5 to -40 kPa. Soil water content, depth of planting, and their interaction had significant (P < 0.001) effects on final germination and emergence but mulch, or any interactions involving mulch, had no such effects. Increasing depth of planting by 1 cm increased the thermal time required for emergence by 2.8°Cd, and decreasing water content by 1% increased the thermal time required for emergence by 3.2°Cd.Germinación y emergencia del maíz


2017 ◽  
Vol 33 (6) ◽  
pp. 859-868 ◽  
Author(s):  
Freddie R. Lamm ◽  
Danny H. Rogers ◽  
Alan J. Schlegel ◽  
Xiaomao Lin ◽  
Robert M. Aiken ◽  
...  

Abstract. Residual soil water after harvest and prior to planting was measured to a depth of 2.4 m with neutron attenuation techniques for approximately 45 irrigated corn and 45 dryland wheat fields annually from 2010 through 2012 in the western one-third of Kansas. The sampling locations were in three-county transects in northwest, west central and southwest Kansas with generally five fields for each crop type for each county. Residual plant available soil water (PASW) in corn fields was generally much greater than in wheat fields (150%-160% greater) for any given sampling period illustrating the residual influence of irrigation. Although weather conditions varied between regions and years there was not a strong effect on PASW in irrigated corn fields but there was an effect in dryland wheat fields. Annual differences in fall irrigated corn PASW for the 21 individual fields that were available for sampling in all three years varied less than 50 mm/2.4 m soil profile implying considerable stability in an individual producer’s response (irrigation management and irrigation system capacity) to changing weather conditions as evidenced by the similar year-to-year PASW values. Drought conditions existed for much of the total period (fall 2010 through fall 2012) in southwest Kansas, yet the irrigated corn PASW was still relatively high (PASW value at approximately 62% of water stored at field capacity in a 2.4 m profile). So, the presence of drought may not be a good indicator of the amounts of residual soil water producers are leaving after irrigated corn harvest. Although differences in irrigated corn PASW varied greatly among producers (183% to 722% within a region), there were much smaller differences between regions and years with a variation from 8% to 22%. Irrigation system capacity (flowrate/area) had very little effect on residual fall PASW in the corn fields possibly indicating that producers with deficit capacity are pumping earlier and later into the season to help mitigate their lower irrigation capacity. Irrigated corn grain yields began to plateau when PASW reached a value of approximately 200 mm/2.4 m profile which would represent a water storage of approximately 56% of field capacity. The residual PASW in irrigated corn fields decreased about 1 mm for each 2 mm decrease in irrigation and cropping season precipitation illustrating the difficulties that can arise in managing for a target residual PASW. These results suggest that producers should be scheduling irrigation with science-based methods, rather than habits and previous experiences. Keywords: Corn, Field capacity, Soil moisture content, Soil water, Volumetric water content, Wheat.


Soil Research ◽  
1975 ◽  
Vol 13 (1) ◽  
pp. 13 ◽  
Author(s):  
BA Carbon

Theoretical and experimental evidence is provided to show that the redistribution of a given amount of water some days after infiltration into a previously dry soil can be predicted, provided that the relationship between soil water potential and soil water content is known. The capillary potential at the wetting front during infiltration into the dry soil is also required. In sandy soils an increase in amount of applied water leads to a decrease in the soil moisture content at the soil surface. This change in 'field capacity' as a function of applied water is shown to strongly influence seedling emergence.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 732
Author(s):  
Xiaohu Jiang ◽  
Long He

Irrigation helps grow agricultural crops in dry areas and during periods of inadequate rainfall. Proper irrigation could improve both crop productivity and produce quality. For high density apple orchards, water relations are even more important. Most irrigation in tree fruit orchards is applied based on grower’s experience or simple observations, which may lead to over- or under-irrigation. To investigate an effective irrigation strategy in high-density apple orchard, three irrigation methods were tested including soil moisture-based, evapotranspiration (ET)-based and conventional methods. In soil moisture-based irrigation, soil water content and soil water potential sensors were measured side by side. In ET-based irrigation, daily ET (ETc) and accumulated water deficit were calculated. Conventional method was based on the experience of the operator. The experiment was conducted from early June through middle of October (one growing season). Lastly, water consumption, fruit yield and fruit quality were analyzed for these irrigation strategies. Results indicated that the soil moisture-based irrigation used least water, with 10.8% and 4.8% less than ET-based and conventional methods, respectively. The yield from the rows with the soil moisture-based irrigation was slightly higher than the other two, while the fruit quality was similar. The outcome from this study proved the effectiveness of using soil moisture sensors for irrigation scheduling and could be an important step for future automatic irrigation system.


Sign in / Sign up

Export Citation Format

Share Document