EFFECTS OF CROP ROTATIONS AND FERTILIZATION ON YIELDS AND QUALITY OF SPRING WHEAT GROWN ON A BLACK CHERNOZEM IN NORTH-CENTRAL SASKATCHEWAN

1990 ◽  
Vol 70 (2) ◽  
pp. 383-397 ◽  
Author(s):  
R. P. ZENTNER ◽  
C. A. CAMPBELL ◽  
K. E. BOWREN ◽  
W. EDWARDS

Effects of rotation length, crop sequence, and fertilization on yields and quality of spring wheat (Triticum aestivum L.) were examined for eight crop rotations over a 27-yr period (1960-1986) on an Orthic Black Chernozem at Melfort, Saskatchewan. The silty clay loam soil had an initial organic N content of about 0.55% (0-to 15-cm depth). During 1960-1971, fertilized plots received N and P based on general recommendations for the region; thereafter, fertilizer was applied based on soil tests. Yields of wheat grown on fertilized fallow were similar for fallow-wheat, fallow-wheat-wheat (F-W-W), and a 6-yr fallow-wheat-legume hay rotation (avg. 2519 kg ha−1 in 1960-1971 and 3036 kg ha−1 in the wetter 1972-1986 period). In contrast, yields of wheat grown on fertilized stubble in a F-W-W rotation (avg. 2113 kg ha−1 in 1960-1971 and 2775 kg ha−1 in 1972-1986) averaged 34% higher than yields of continuous monoculture wheat due to fewer observed weed and disease problems. Fertilized stubble wheat yields in F-W-W averaged 88% of comparable fallow wheat yields, while continuous wheat averaged only 66%. Fertilizer increased fallow wheat yields by 14-18%. Stubble wheat yields were increased 11–16% for 3-yr rotations and 26% for continuous wheat during 1960-1971 when relatively low rates of N fertilizer were applied, and 22–31% and 49% for these same rotations, respectively, during 1972-1986 when moisture was more favorable and soil test criteria were used. Inclusion of grass-legume hay or legume green manure crops in the rotations provided no yield benefit for subsequent wheat crops in this fertile soil. The yields of wheat from fertilized rotations increased significantly with years of study reflecting the higher fertilizer rates used in later years and use of improved production technologies. Wheat yields of unfertilized treatments generally increased or showed no trend with time, thus providing no evidence of declining soil fertility. Crude protein concentration and total N yield of the grain were significantly increased by fertilization and inclusion of a grass-legume hay crop in the rotation. Total grain P yield of wheat was also influenced by fertilizer and by rotation, while volume weight of grain was unaffected by treatment.Key words: N and P fertilizer; grass-legume hay; legume green manure; crop sequence; protein

1987 ◽  
Vol 67 (4) ◽  
pp. 965-982 ◽  
Author(s):  
R. P. ZENTNER ◽  
C. A. CAMPBELL ◽  
E. D. SPRATT ◽  
H. REISDORF

The effects of crop sequence, rotation length, and fertilization on yields of spring wheat were examined for 14 crop rotations over a 25-yr period on a Black Chernozemic heavy clay soil at Indian Head, Saskatchewan. Plots that were fertilized with N and P received the generally recommended rates for the region during the first 18 yr but in the last 7 yr fertilizers were applied based on soil tests. Yields of fertilized wheat grown on fallow were similar for the 2-yr fallow-wheat and the 3-yr fallow-wheat-wheat rotations (25-yr avg. 2505 kg ha−1). Yields of fertilized wheat grown on stubble were also similar within the monoculture rotations. During the first 18 yr, yields of fertilized stubble-wheat averaged 1656 kg ha−1 or about 64% of comparable fallow-wheat yields; but, during the last 7 yr, stubble-wheat yields were generally similar to those obtained on fertilized fallow. Removal of the straw each year from a 3-yr fallow-wheat-wheat rotation did not affect fallow- or stubble-wheat yields. Application of recommended rates of N and P fertilizer increased the 25-yr fallow-wheat yields by 11% (from 2254 to 2505 kg ha−1); the yield increases were significant about 70% of the time. On stubble, application of N and P fertilizer increased wheat yields by 47% (from 1130 to 1656 kg ha−1) during 1960–1977 and by 142% (from 935 to 2263 kg ha−1) during 1978–1984. The yield increase from fertilizing stubble-wheat was significant in 24 of 25 yr. Including grass-legume forage, or legume green manure crops in the rotation increased yields of wheat grown on the unfertilized partial fallow by 15–24% and on unfertilized stubble by 33–71%; the yields were similar and sometimes higher than those obtained on fallow in the well-fertilized monoculture wheat rotations. In comparison, the yields of unfertilized stubble-wheat in the cereal-forage rotations were generally similar to those obtained on fertilized stubble in monoculture rotations during 1960–1977, though they were lower during 1978–1984 when the monoculture rotations began receiving fertilizer based on soil tests. Yields of wheat grown on flax stubble that received fertilizer at the average rate of 68 kg ha−1 N plus 22 kg ha−1 P2O5 since 1978 were generally similar to yields obtained on fertilized fallow (avg. 2546 kg ha−1). These yields averaged 13% higher than yields of wheat grown on cereal stubble in monoculture rotations that received slightly more fertilizer N. Yields of fallow- and stubble-wheat were generally maintained over time with the application of recommended rates of N and P fertilizers, or by inclusion of legume-forage crops in the rotation, but yields of unfertilized stubble-wheat declined with time possibly reflecting declining soil fertility.Key words: Wheat, nitrogen and phosphorous fertilizer, crop sequence, cereal forage rotations, legume green manure crops


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 642
Author(s):  
Yuliia Kochiieru ◽  
Audronė Mankevičienė ◽  
Jurgita Cesevičienė ◽  
Roma Semaškienė ◽  
Jūratė Ramanauskienė ◽  
...  

In this work, we studied the impact of harvesting time on Fusarium mycotoxin occurrence in spring wheat and the effect of mycotoxin contamination on the quality of these grains. The spring wheat grains (Triticum aestivum L.) were collected in 2016–2018 when the crop had reached full maturity, 10 ± 2 days and 17 ± 3 days after full maturity. The grain samples were analyzed for Fusarium infection and co-contamination with mycotoxins deoxynivalenol (DON), zearalenone (ZEA), and T-2 toxin (T-2), as well as the quality of the wheat grains (mass per hectolitre, contents of protein, starch, ash and fat, particle size index (PSI), falling number, sedimentation, wet gluten content, and gluten index). The occurrence of Fusarium spp. fungi and the mycotoxins produced by them in the grains was mostly influenced by the harvesting time and meteorological conditions. The correlations between Fusarium species and the mycotoxins produced by them in the grains of spring wheat showed F. graminearum to be a dominant species, and as a result, higher concentrations of DON and ZEA were determined. The co-occurrence of all the three mycotoxins analyzed (deoxynivalenol, zearalenone, and T-2 toxin) was identified in wheat. In rainy years, a delay in harvesting resulted in diminished grain quality of spring wheat, as indicated by grain mass per hectolitre and falling number. Negative correlations were found in highly contaminated grains between mycotoxins (DON, ZEA, and T-2) and falling number and grain mass per hectolitre values.


2014 ◽  
Vol 94 (2) ◽  
pp. 223-235 ◽  
Author(s):  
R. Kröbel ◽  
R. Lemke ◽  
C. A. Campbell ◽  
R. Zentner ◽  
B. McConkey ◽  
...  

Kröbel, R., Lemke, R., Campbell, C. A., Zentner, R., McConkey, B., Steppuhn, H., De Jong, R. and Wang, H. 2014. Water use efficiency of spring wheat in the semi-arid Canadian prairies: Effect of legume green manure, type of spring wheat, and cropping frequency. Can. J. Soil Sci. 94: 223–235. In the semi-arid Canadian prairie, water is the main determinant of crop production; thus its efficient use is of major agronomic interest. Previous research in this region has demonstrated that the most meaningful way to measure water use efficiency (WUE) is to use either precipitation use efficiency (PUE) or a modified WUE that accounts for the inefficient use of water in cropping systems that include summer fallow. In this paper, we use these efficiency measures to determine how cropping frequency, inclusion of a legume green manure, and the type of spring wheat [high-yielding Canada Prairie Spring (CPS) vs. Canada Western Red Spring (CWRS)] influence WUE using 25 yr of data (1987–2011) from the “New Rotation” experiment conducted at Swift Current, Saskatchewan. This is a well-fertilized study that uses minimum and no-tillage techniques and snow management to enhance soil water capture. We compare these results to those from a 39-yr “Old Rotation” experiment, also at Swift Current, which uses conventional tillage management. Our results confirmed the positive effect on WUE of cropping intensity, and of CPS wheat compared with CWRS wheat, while demonstrating the negative effect on WUE of a green manure crop in wheat-based rotations in semiarid conditions. Furthermore, we identified a likely advantage of using reduced tillage coupled with water conserving snow management techniques for enhancing the efficiency of water use.


2018 ◽  
Vol 12 (05) ◽  
pp. 676-685
Author(s):  
Georgiana E. de C Marques ◽  
◽  
Kiany S. B. Cavalcante ◽  
Lanna K. Silva ◽  
Natilene M. Brito ◽  
...  

2013 ◽  
Vol 93 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Odean M. Lukow ◽  
Kathy Adams ◽  
Jerry Suchy ◽  
Ron M. DePauw ◽  
Gavin Humphreys

Lukow, O. M., Adams, K., Suchy, J., DePauw, R. M. and Humphreys, G. 2013. The effect of the environment on the grain colour and quality of commercially grown Canada hard white spring wheat, Triticum aestivum L. ‘Snowbird’. Can. J. Plant Sci. 93: 1–11. One of the main advantages of hard white wheat is its lighter grain colour, which can produce visually appealing lighter-coloured end-products. However, grain colour variation can be a concern due to a lack of consistency. This study was carried out to determine the effect of the environment on commercially grown hard white wheat grain colour and wheat grading. More than 1100 samples of the cultivar Snowbird were collected from elevators across western Canada during the 2003 to 2007 crop years. Grain and wholemeal colours were recorded using the CIE L* a* b* scale. Samples were analyzed for grain properties including dimensions, hardness and protein content. Variation in grain colour was mostly attributed to annual fluctuations in climatic conditions (71–79%) and agro-climates (13–18%). Grain ranged in colour from white and bright to dark grey-red. Grain brightness was very highly correlated with grain yellowness. Grain a* and b* were inversely related to grade indicating that higher quality grain was redder and more yellow than lower grades. Warmer and drier environments showed reduced grain yields but produced on average better quality grain with higher protein content.


2006 ◽  
Vol 86 (1) ◽  
pp. 109-118 ◽  
Author(s):  
C. A. Campbell ◽  
F. Selles ◽  
R. De Jong ◽  
R. P. Zentner ◽  
C. Hamel ◽  
...  

High NO3 concentration in drinking water can be a health hazard, but properly fertilized rotations containing cereals and pulses or perennial grasses reduce the risk of NO3 leaching. Over fertilization, and sometimes under fertilization, frequent summer fallowing, and use of legume green manure may increase the risk of NO3 leaching in subhumid areas. We used a crop rotation study, initiated in 1987 on a medium-textured Brown Chernozem at Swift Current, Saskatchewan, to determine the influence of cropping frequency, legume green manure, wheat class and grass hay crop on NO3-N leached beyond the rooting depth of cereals (1.2 m) after 17 yr. Nitrate distribution in the soil to 2.4 m was measured in 1987 and again in 2003. All rotations received N and P fertilizer based on soil tests, and were generally managed using no-tillage. The period had 4% more precipitation than the long-term average (367 mm) with 5 yr exceeding the average by >13%. A comparison of NO3-N content below 1.2 m depth in 1987 and 2003 showed no significant (P < 0.05) leaching has occurred, although the legume (Lens culinaris L.) green manure-wheat-wheat (Triticum aestivum L.) system showed evidence it may eventually leach NO3. Contrary to expectations, continuous-wheat, because of higher N applied and possibly because net N mineralization is small under no-tillage, tended to leach more NO3 than fallow-containing rotations (P = 0.09). Crested Wheatgrass (Agropyron cristatum L. Gaertn) reduced NO3 content to 2.4 m because it is a perennial with deep and extensive roots. There was no effect of wheat class on the amount of NO3 leached. Key words: Cropping frequency, wheat class, lentil green manure, crested wheatgrass


1998 ◽  
Vol 78 (3) ◽  
pp. 551-562 ◽  
Author(s):  
G. Roloff ◽  
R. de jong ◽  
C. A. Campbell ◽  
R. P. Zentner ◽  
V. M. Benson

The Environmental Policy Integrated Climate (EPIC) model is an important support tool for environmental management. Previous tests of the model have determined that it is suitable for long-term yield estimation, but it is less precise in assessing annual yield variability. To determine the reasons for the discrepancies between estimated and measured yields, we tested the ability of EPIC version 5300 to predict soil water and soil nitrogen dynamics, using data from a long-term spring wheat (Triticum aestivum L.) rotation experiment in the semiarid prairie region of Canada. Potential evapotranspiration (PET) estimates varied among methods tested: Priestley-Taylor and Penman-Monteith methods resulted in PET means that were about twice those obtained with the Hargreaves and Baier-Robertson methods. The higher PET means were associated with an excessive estimation of net radiation. We used the Baier-Robertson method to generate the other estimates reported herein. EPIC generally overestimated total soil water, but it still allowed clear differentiation among rotation phases and times of the year, and provided adequate estimates of water during the critical shot-blade stage. Water estimates by soil layer were also generally overpredicted, especially at depths from 0.15 to 0.60 m, but we were able to differentiate among rotation phases and times of the year. Precision of these latter estimates was generally low, accounting at most for 27% of the variability, and varied by soil layer, rotation phase and time of the year. Nitrate-N estimates tended to be lower than measured values, especially at depths below 0.3 m and during vegetative growth phases. However, the estimates also allowed us to distinguish among the rotation phases and times of the year. Total N and organic C were satisfactorily estimated by EPIC. In general, EPIC provided adequate long-term estimates of the environmental quality indicators tested. Key words: Environmental quality, environmental modelling, sustainability, spring wheat, fallow, potential evapotranspiration methods


Sign in / Sign up

Export Citation Format

Share Document