Soil micro-arthropod communities and microbial parameters in the potato ridge under two field management systems on sandy loams in Atlantic Canada

2007 ◽  
Vol 87 (4) ◽  
pp. 399-404 ◽  
Author(s):  
M R Carter ◽  
C. Noronha

Intensive forms of soil management occur in potato (Solanum tuberosum L.) production systems, but little is known about the influence of such practices on soil biological properties. Microbial biomass C, phosphatase activity, and the abundance (number), richness (family groups), and diversity of soil micro-arthropods (Collembola and mites) were compared in conventional and adjacent integrated pest management (IPM) systems of 3-yr potato rotations, established on fine sandy loams in Prince Edward Island, Atlantic Canada. The study was conducted at two sites over a 2-yr period. Soil microbial parameters were generally similar between management systems. Management differences showed some effect on micro-arthropod abundance and richness in three of the eight comparisons. Under optimum soil-water conditions, both Collembola and mite communities increased over the growing season regardless of management system. Key words: Soil management for potato, Collembola, mites, soil microbial biomass carbon, acid phosphatase, integrated pest management

2016 ◽  
Vol 8 (2) ◽  
pp. 1126-1132 ◽  
Author(s):  
Sanjay Arora ◽  
Divya Sahni

In modern agriculture, chemical pesticides are frequently used in agricultural fields to increase crop production. Besides combating insect pests, these insecticides also affect the activity and population of beneficial soil microbial communities. Chemical pesticides upset the activities of soil microbes and thus may affect the nutritional quality of soils. This results in serious ecological consequences. Soil microbes had different response to different pesticides. Soil microbial biomass that plays an important role in the soil ecosystem where they have crucial role in nutrient cycling. It has been reported that field application of glyphosate increased microbial biomass carbon by 17% and microbial biomass nitrogen by 76% in nine soils at 14 days after treatment. The soil microbial biomass C increased significantly upto 30 days in chlorpyrifos as well as cartap hydrochloride treated soil, but thereafter decreased progressively with time. Soil nematodes, earthworms and protozoa are affected by field application rates of the fungicide fenpropimorph and other herbicides. Thus, there is need to assess the effect of indiscriminate use of pesticides on soil microorganisms, affecting microbial activity and soil fertility.


2020 ◽  
Vol 36 (4) ◽  
Author(s):  
Sarah Priscilla do Nascimento Amorim ◽  
Cacio Luiz Boechat ◽  
Lizandra de Sousa Luz Duarte ◽  
Daniela Fernandes de Oliveira ◽  
João Carlos Medeiros ◽  
...  

Carbon and nitrogen from the soil microbial biomass play a significant role in the rotation of C and N, and promote nutrient cycling. Thus, the objective of this study was to evaluate changes in the soil microbial biomass with growing doses of cover plant straw species. The cover plants cultivated in the cerrado biome region were incorporated an Oxisol Ustox. The straw of each cover plant was incorporated at doses of 0; 10; 20 and 30 Mg ha-1. The soil basal respiration was determined by incubating, after 21 days. The microbial biomass carbon and nitrogen were determined by the method the microwave irradiation. The microbial biomass carbon and nitrogen contents in extracts were determined by the wet combustion method and Kjeldahl-N. The metabolic quotient was calculated as the ratio between soil basal respiration rate and microbial biomass C, and the microbial quotient as the ratio between soil microbial biomass C and total carbon of soil. The soil microbial population measured by the attributes of quality responds to the addition of the of grass and legume straws incorporated to the soil; The treatments that cause the greatest stress to the microbial population, at 21 days, mediated by the metabolic quotient, are guandu-anão at a dose of 10 Mg ha-1; Guandu-anão and Guandu fava-larga at 20 Mg ha-1 and Brachiária at a dose of 30 Mg ha-1; The best result regarding microbial attributes of soil quality evaluated was observed with the incorporation of all doses of the straw of Crotalaria-ocroleuca.  


Soil Research ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 321 ◽  
Author(s):  
Hao Chen ◽  
Lu Lai ◽  
Xiaorong Zhao ◽  
Guitong Li ◽  
Qimei Lin

Drying and rewetting (DRW) events are very common in arable land. However, it is not clear how the frequency of DRW stress history influences soil carbon (C) and phosphorus (P) dynamics under field conditions. In this study, an arable loam calcareous soil was treated with simulated farming practices that included wheat straw and nitrogen incorporation and three DRW cycles at intervals of 14 days during a 90-day experimental period of incubation at 25°C. The DRW events significantly increased cumulative CO2-C evolution, but the increase rate of cumulative CO2-C evolution declined with increasing DRW cycles. Microbial biomass C (MBC) and P (MBP) decreased by 9–55% and 9–29%, respectively, following each DRW event, but recovered to the level before DRW treatment within 7 days. Frequent drying and rewetting caused significant increases in both extractable organic C and NaHCO3-extractable P, by 10–112% and 10–18%, respectively. The fluctuation of the tested parameters became less with increasing frequency of DRW cycles. Changes in microbial biomass, either MBC or MBP, were poorly correlated with those of extractable organic C and NaHCO3-extractable P. Overall, frequent DRW cycles had much stronger and longer lasting impact on soil biomass P dynamics than biomass C. These findings may imply certain links among soil moisture, microbial activity and nutrient bioavailability that are important in water and nutrient management.


2012 ◽  
Vol 36 (5) ◽  
pp. 518-525 ◽  
Author(s):  
Patrícia Ribeiro Maia ◽  
Antonio Rodrigues Fernandes ◽  
Vânia Silva Melo ◽  
Elaine Rodrigues Santos ◽  
Gisele Barata da Silva

The microbial biomass and activity are biological indicators sensitive to environmental changes caused by agricultural use and can provide important information for the planning of adequate land use. The objective of this research was to evaluate the nutrient recycling, persistence, and biological attributes of sorghum straw in Oxisol as a function of soil management systems. The experiment was carried out at the Federal Rural University of Amazonia in randomized block design with 3 x 2 factorial and four replicates. Three sorghum hybrids and two soil management systems were the factors used to assess straw decomposition. In order to evaluate the biological attributes, a 2 x 2 factorial experiment with four replicates was carried out using two soil management systems and two sampling dates. Total organic carbon (TOC), carbon in the soil microbial biomass (C-SMB), C-SMB/TOC ratio, basal respiration and metabolic quotient (qCO2) were investigated. The Qualimax hybrid presented the highest C/N ratio (55) and longer straw persistence in soil after 120 days of management (35%). The highest TOC, C-SMB, C-SMB/TOC ratio, and basal respiration and the smallest qCO2 were observed during the rainy season and in the no-till system.


2010 ◽  
Vol 109 (2) ◽  
pp. 110-115 ◽  
Author(s):  
F. García-Orenes ◽  
C. Guerrero ◽  
A. Roldán ◽  
J. Mataix-Solera ◽  
A. Cerdà ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document