scholarly journals Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen

2014 ◽  
Vol 94 (3) ◽  
pp. 303-315 ◽  
Author(s):  
Laura L. Van Eerd ◽  
Katelyn A. Congreves ◽  
Adam Hayes ◽  
Anne Verhallen ◽  
David C. Hooker

Van Eerd, L. L., Congreves, K. A., Hayes, A., Verhallen, A. and Hooker, D. C. 2014. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Can. J. Soil Sci. 94: 303–315. Long-term studies allow for quantification of the effects of crop production practices, such as tillage and crop rotation, on soil quality and soil C and N stores. In two experiments at Ridgetown, ON, we evaluated the long-term (11 and 15 yr) effect of tillage system and crop rotation on soil quality via the Cornell Soil Health Assessment (CSHA) at 0–15 cm and soil organic C (SOC) and total N at 5-, 10-, and 20-cm increments to 120 cm depth. The CSHA soil quality score and SOC and total N were higher with no-till (NT) than fall moldboard plough with spring cultivation (conventional tillage, CT) and rotations with winter wheat [soybean–winter wheat (S-W) and soybean–winter wheat–corn (S-W-C)] compared with rotations without winter wheat. In both long-term trials, NT had ca. 21 Mg ha−1more or 14% higher SOC than CT in the 0- to 100-cm soil profile, a trend which contrasts previous research in eastern Canada. Thus, the two long-term trial results at Ridgetown suggest that to improve soil quality and storage of C and N, growers on clay loam soil in southwestern Ontario should consider adopting NT production practices and including winter wheat in the rotation.

2014 ◽  
pp. 140505045536003
Author(s):  
Laura L. Van Eerd ◽  
Katelyn A. Congreves ◽  
Anne Verhallen ◽  
Adam Hayes ◽  
David C. Hooker

1995 ◽  
Vol 35 (7) ◽  
pp. 877 ◽  
Author(s):  
DP Heenan ◽  
WJ McGhie ◽  
FM Thomson ◽  
KY Chan

The influence of rotation, tillage, stubble management, and nitrogen (N) fertiliser on soil organic carbon (C) and total nitrogen (N) was studied between 1979 and 1993 in a field experiment at Wagga Wagga, New South Wales, on a red earth. The rotations included lupin-wheat (LW), subterranean clover-wheat (SW), and continuous wheat (WW) with and without N fertiliser (100 kg N/ha). At the start of the experiment the soil organic C and N in the surface 10 cm were high following many years of subterranean clover based pasture. The trends in soil organic C varied considerably between treatments from near equilibrium levels for SW direct-drilled and stubble-retained to annual losses of 400 kg/ha for WW conventionally cultivated and stubble burnt. Similarly, total soil N content over time varied from equilibrium levels to highly significant declines of 53 kg/ha. year for WW conventionally cultivated and stubble burnt. Both direct drilling and stubble retention reduced the losses of organic C and N compared with conventional cultivation and burning, with greatest loss occurring when cultivation and stubble burning were combined. SW and LW produced a similar contribution of fixed N to total N product removal, but greater benefits to following wheat crops were provided by SW rotations. Where losses of organic C and N were recorded there was no evidence of equilibrium levels being reached after 14 years.


Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Fiona A. Robertson ◽  
Peter J. Thorburn

The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).


2020 ◽  
Vol 176 ◽  
pp. 04002
Author(s):  
K.O. Prokopyeva ◽  
V.A. Romanenkov ◽  
N.K. Sidorenkova ◽  
P.V. Krasilnikov

The feasibility of implementing the "4 ppm" initiative, which assumes an annual increase in organic carbon stocks of agricultural soils in the layer 0-40 cm, was estimated with the dynamic carbon model RothC in two long-term DAOS experiments in the Moscow region, conducted in neighbouring fields for 74 and 76 years. Treatments included absolute control, application of organic, mineral, organic and mineral fertilizers at increasing rates. One of the experiments showed the growth of C stocks 12‰ in the layer 0-20 cm in the first 20 years in treatments with mineral fertilization, and 17‰ with the additional application of manure in an average annual rate of 10 Mg·ha-1. The accumulation of C allowed increasing its stock by 18-25%. Still, with the subsequent decline in crop rotation productivity, there was a loss of part of the previously accumulated C. In another experiment, at close values of annual C input, there was a loss of initial C stock due to the history of land use. The crop rotation adjustment provided a 3-8 ‰ increase of soil C in the 0-20 cm layer in the first 20 years after introduction but was insufficient to match the "4 ppm" initiative. In the long term, the organic fertilizer system had an advantage over the mineral one in ensuring the stability of organic C stocks in the arable layer. However, the management of C sequestration was complicated in the non-equilibrium state of the carbon system "plant residues-organic fertilizer-soil".


Solid Earth ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 1-9 ◽  
Author(s):  
A. Cruz-Ruíz ◽  
E. Cruz-Ruíz ◽  
R. Vaca ◽  
P. Del Aguila ◽  
J. Lugo

Abstract. Mexico is the world's fourth most important maize producer; hence, there is a need to maintain soil quality for sustainable production in the upcoming years. Pumice mining is a superficial operation that modifies large areas in central Mexico. The main aim was to assess the present state of agricultural soils differing in elapsed time since pumice mining (0–15 years) in a representative area of the Calimaya region in the State of Mexico. The study sites in 0, 1, 4, 10, and 15 year old reclaimed soils were compared with an adjacent undisturbed site. Our results indicate that gravimetric moisture content, water hold capacity, bulk density, available phosphorus, total nitrogen, soil organic carbon, microbial biomass carbon and phosphatase and urease activity were greatly impacted by disturbance. A general trend of recovery towards the undisturbed condition with reclamation age was found after disturbance, the recovery of soil total N being faster than soil organic C. The soil quality indicators were selected using principal component analysis (PCA), correlations and multiple linear regressions. The first three components gathered explain 76.4 % of the total variability. The obtained results revealed that the most appropriate indicators to diagnose the quality of the soils were urease, available phosphorus and bulk density and minor total nitrogen. According to linear score analysis and the additive index, the soils showed a recuperation starting from 4 years of pumice extraction.


2021 ◽  
Author(s):  
Lucas Tabaud ◽  
Christian Walter ◽  
Clotilde Blancfene ◽  
Chantal Gascuel ◽  
Blandine Lemercier ◽  
...  

<p>Soils are crossroads of carbon and nitrogen geochemical cycles and were consequently identified as a potential sink for carbon (C) and a compartment storage for nitrogen (N). Monitoring the joint evolution over time of organic C and total N stocks in soils appears interesting because of the C/N ratio is an indicator of changes in the organic matter quality. Nevertheless, the temporal evolutions detected in most of the existing studies are in the order of a few gC.m<sup>-2</sup>.yr<sup>-1</sup> (C) and mgN.m<sup>-2</sup>.yr<sup>-1 </sup>(N). This study aims to assess uncertainties of soil organic carbon (SSOC) and soil total nitrogen (SSTN) stocks in the topsoil layer (0-25 cm) using three different methods (stochastic, deterministic and experimental), in order to identify the main sources of uncertainty and to evaluate the significance of SSOC and SSTN evolutions over the time. This study was based on a 1200 ha agricultural catchment area in Brittany (France) where systematic soil sampling was repeated at 108 sites in 2013 and 2018. Moreover, soil sampling was repeated three times in 2020 at the same sites by 3 different teams of experienced samplers. Comparing the three methods of uncertainty assessment, we found they provided equivalent results with a SSOC standard deviation of 0.85, 0.74 and 0.68 kgC.m<sup>-2</sup> respectively for stochastic, deterministic and experimental approaches and 0.08, 0.07 and 0.06 kgN.m<sup>-2</sup> for SSTN. Variance decomposition identified variations of fine earth mass as the main source of uncertainty (77 % of total variance) and attributed at least 16% of the uncertainties due to the operator procedure and were therefore reducible. Using the stochastic approach, the width of the 90 % confidence interval was estimated at each sampling site for C, N and C/N temporal changes. Changes were considered significant at respectively 59, 77 et 99 sites for SSOC, SSTN and C/N: a majority of sites lost organic carbon (-0.03 ± 0.07 kgC.m<sup>-2</sup>.yr<sup>-1</sup>), gained total nitrogen (0.006 ± 0.005 kgN.m<sup>-2</sup>.yr<sup>-1</sup>) and the C.N<sup>-1</sup> (-0.17 ± 0.09 yr<sup>-1</sup>) ratio decreased. Finally, stock measurements uncertainty was mainly explained by soil natural variability but may still be reduced by a better control of the measurement procedure. In the agricultural context of the study area, the accuracy of the direct measurement appeared sufficient to detect SSOC and SSTN evolution over a time span of 5 years.</p>


2013 ◽  
Vol 5 (1) ◽  
pp. 163-187
Author(s):  
M. Martín-Carrillo ◽  
L. Parras-Alcántara ◽  
B. Lozano-García

Abstract. The agricultural Mediterranean areas are dedicated to arable crops (AC), but in the last few decades, a significant number of AC has a land use change (LUC) to olive grove cultivations (OG) and vineyards (V). A field study was conducted to determine the long-term effects (46 yr) of LUC (AC by OG and V) and to determine soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification across the soil entire profile, in Montilla-Moriles denomination of origin (DO), in Calcic-Chromic Luvisols (LVcc/cr), an area under semiarid Mediterranean conditions. The experimental design consisted of studying the LUC on one farm between 1965 and 2011. Originally, only AC was farmed in 1965, but OG and V were farmed up to now (2011). This LUC principally affected the thickness horizon, texture, bulk density, pH, organic matter, organic carbon, total nitrogen and C:N ratio. The LUC had a negative impact in the soil, affecting the SOC and TN stocks. The conversion from AC to V and OG involved the loss of the SOC stock (52.7% and 64.9% to V and OG, respectively) and the loss of the TN stock (42.6% and 38.1% to V and OG, respectively). With respect to the soil quality, the effect was opposite; 46\\,yr after LUC improved the soil quality, increasing the stratification ratio (in V and OG) of SOC, TN and C:N ratio.


1970 ◽  
Vol 25 (1) ◽  
pp. 21-25
Author(s):  
SM Abdur Rahman ◽  
ARM Solaiman

Microbial biomass carbon (C) and nitrogen (N) and their contribution to soil organic carbon and total N contents were assessed in soils collected from Bilashchara Tea Estate under Bangladesh Tea Research Institute (BTRI), Srimangal of Moulavibazar district, and Sripur Tea Garden under Jaintapur of Sylhet district. Microbial biomass C and N in Bila shchara Tea Estate soils varied from 90.4-144.0 and 20.5-29.0 mg/kg soil, and that of Sripur Tea Garden soils varied from 120.7-362.0 and 26.6-59.5 mg/kg soil, respectively. Within the two tea growing areas biomass C/N ratios ranged from 3.35-6.12. Relationships between biomass C and organic carbon and biomass N and total N were positively correlated. The contribution of biomass C to soil organic C was 1.23%, ranging from 0.9-1.55% and the contribution of biomass N to total N content of the soils ranged from 1.19-2.89%. Keywords: Biomass carbon (C); Biomass nitrogen (N); Organic C; Total N; Tea soilDOI: http://dx.doi.org/10.3329/bjm.v25i1.4850 Bangladesh J Microbiol, Volume 25, Number 1, June 2008, pp 21-25


Sign in / Sign up

Export Citation Format

Share Document