EFFECT OF CONCENTRATION OF THE ALUMINUM ION ON ROOT DEVELOPMENT AND ESTABLISHMENT OF LEGUME SEEDLINGS

1965 ◽  
Vol 45 (2) ◽  
pp. 221-234 ◽  
Author(s):  
L. B. MacLeod ◽  
L. P. Jackson

Alfalfa, red clover, ladino clover, alsike clover, and birdsfoot trefoil were germinated in soil (pH 6.5) or in inert silica (8 mesh) and allowed to root in a [Formula: see text] Hoagland and Snyder's nutrient solution (pH 4.5) with 0, 0.5, 1, 2, 4, and 10 p.p.m. of added aluminum. Each species, germinated in silica, was also rooted in an unlimed acid soil (pH 4.6) and the same soil limed to a pH of 6.5.Concentration of aluminum ion remaining in solution was 0, 0.1, 0.2, 0.5, 1.0, and 2.0 p.p.m. Saturation extracts of the unlimed and limed soil contained 0.45 and 0.0 p.p.m respectively of aluminum ion in solution. The pH of the nutrient solutions with 0.5, 1, and 2 p.p.m. of added aluminum increased to 5.0 or higher in 24 hours while that with 4 and 10 p.p.m. of added aluminum remained relatively constant.Seedling weight and chemical composition of the tops and root portions varied significantly between species. Alfalfa and red clover showed the most vigorous rate of establishment, and yields were higher with 0.1 and 0.2 p.p.m. concentration of aluminum ion than with the zero treatment. Significant restriction of top and root growth of all species occurred with less than 1.0 p.p.m. of aluminum ion while 2.0 p.p.m. was toxic to root growth. Growth restrictions were more severe at 21 days after seeding than at the 28- or 32-day stages. Yield of tops and roots growing into unlimed acid soil were 73 and 71% respectively of those growing into limed soil. Aluminum taken up by the plant was concentrated in the roots and only with the concentration of aluminum at 2.0 p.p.m. was the content in the tops increased significantly. Phosphorus in the roots, which increased significantly with aluminum ion concentration, was apparently immobilized by aluminum. Percent Ca in the roots increased and in the tops decreased with increasing concentrations of aluminum. Content of K and Mg also varied with aluminum concentration.

1977 ◽  
Vol 57 (2) ◽  
pp. 197-203 ◽  
Author(s):  
W. A. RICE ◽  
D. C. PENNEY ◽  
M. NYBORG

The effects of soil acidity on nitrogen fixation by alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) were investigated in field experiments at 28 locations, and in greenhouse experiments using soils from these locations. The pH of the soils (limed and unlimed) varied from 4.5 to 7.2. Rhizobia populations in the soil, nodulation, and relative forage yields (yield without N/yield with N) were measured in both the field and greenhouse experiments. Rhizobium meliloti numbers, nodulation scores, and relative yields of alfalfa decreased sharply as the pH of the soils decreased below 6.0. For soils with pH 6.0 or greater, there was very little effect of pH on any of the above factors for alfalfa. Soil pH in the range studied had no effect on nodulation scores and relative yields of red clover. However, R. trifolii numbers were reduced when the pH of the soil was less than 4.9. These results demonstrate that hydrogen ion concentration is an important factor limiting alfalfa growth on acid soils of Alberta and northeastern British Columbia, but it is less important for red clover. This supports the continued use of measurements of soil pH, as well as plant-available Al and Mn for predicting crop response to lime.


1977 ◽  
Vol 57 (2) ◽  
pp. 157-164 ◽  
Author(s):  
D. C. PENNEY ◽  
M. NYBORG ◽  
P. B. HOYT ◽  
W. A. RICE ◽  
B. SIEMENS ◽  
...  

The amount of cultivated acid soil in Alberta and northeastern British Columbia was estimated from pH values of farm samples analyzed by the Alberta Soil Testing Laboratory, and the effect of soil acidity on crops was assessed from field experiments on 28 typical acid soils. The field experiments consisted of two cultivars of barley (Hordeum vulgare L.) and one cultivar each of rapeseed (Brassica campestris L.), red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) grown with and without lime for 2 yr. There are about 30,000 ha of soils with a pH of 5.0 or less where soil acidity seriously restricts yields of all four crop species. There are approximately 300,000 ha with a soil pH of 5.1–5.5 where liming will on the average increase yields of alfalfa by 100%, yields of barley by 10–15%, and yields of rapeseed and red clover by 5–10%. There are a further 1,600,000 ha where soil pH ranges from 5.6 to 6.0 and liming will increase yields of alfalfa by approximately 50% and yields of barley, rapeseed and red clover by at least 4–5%.


Soil Research ◽  
1995 ◽  
Vol 33 (3) ◽  
pp. 443 ◽  
Author(s):  
NS Jayawardane ◽  
HD Barrs ◽  
WA Muirhead ◽  
J Blackwell ◽  
E Murray ◽  
...  

Subsoil acidity causes low crop production, which is often associated with shallow root development and restricted soil water extraction. In part I of this series, lime-slotting of an acid soil was shown to improve the soil physical and chemical characteristics for root growth. In a lysimeter study on an acid soil, the effects of several soil ameliorative treatments on root growth, water extraction and yields of a medic crop were evaluated. Large lysimeter cores of 0.75 m diameter and 1.35 m deep were used. The soil treatments included a non-ameliorated acid soil, lime-slotting with a 0.15 m wide and 0.8 m deep slot containing 20 t ha-1 of lime, lime-slotting combined with surface phospho-gypsum application at 10 t ha-1, and complete amelioration of the entire soil volume by mixing lime at 133 t ha-1 and repacking to a low bulk density of 1.1 t m-3. In the non-ameliorated acid soil, medic roots were confined to the surface (0.1 m) layer, resulting in limited water extraction of 32 mm during a prolonged drying cycle, and a low dry matter yield of 70 g m-2. In the lime slotted soil, roots grew within the slot to its full depth, although penetration into the undisturbed soil was restricted to the soil immediately adjacent to the slot. Consequently, the root length per unit surface area (La) at depths below 0.1 m depth was increased to 9.9 km m-2. During a drying cycle, water extraction increased to 58 mm. The increased water extraction came from both the slotted soil and the undisturbed soil between slots. This led to an increase in dry matter yields to 270 g m2. In lime-slotted soils with surface gypsum applications, the root growth and crop water extraction patterns were similar to the lime-slotted soil. Repacking limed soil resulted in similar root lengths (L(a) 10.0 km m-2) as lime-slotted soil. However, owing to more uniform distribution of roots in the repacked soil, water extraction was increased to 100 mm and yields increased to 590 g m-2. Yields of non-ameliorated soil were only 12% of the repacked, limed soil. However, lime-slotting which involves loosening only 25% of the soil surface area and addition of only one-sixth of the amount of lime required for complete soil amelioration, led to marked increases in yield (46% of the yield of repacked soil). Future field studies are required to evaluate the optimum limed-slot configurations required for different soils, crops and climatic regimes.


1988 ◽  
Vol 39 (3) ◽  
pp. 319 ◽  
Author(s):  
RC Bruce ◽  
LA Warrell ◽  
DG Edwards ◽  
LC Bell

In the course of three experiments, soybean (Glycerine max (L.) Merr.) cv. Forrest was grown in 21 soils (four surface soils and 17 subsoils) amended with liming materials (CaCO3 and Mg CO3) and soluble Ca salts (CaSO4.2H20 and CaCl2.2H2O). In most soils, the soluble salts increased concentrations and activities of Al species in solution to levels that restricted root growth, and MgCO3, induced a Ca limitation to root growth. Root lengths after three days were related to so11 and soil solution attributes.Suitable diagnostic indices for the prediction of Ca limitations to root growth were either Ca saturation of the effective cation exchange capacity or Ca activity ratio of the soil solution, which was defined as the ratio of the activity of Ca to the sum of the activities of Ca, Mg, Na, and K. Values corresponding to 90% relative root length (RRL) of soybean were 0.05 for the Ca activity ratio and 11% for Ca saturation. Calcium activity and Ca concentration in the soil solution and exchangeable Ca were less useful for this purpose.Soil Al saturation was not a good predictor of Al toxicity, but soil solution measurements were. The activities of Al3+ and AlOH2+ gave the best associations with RRL, and values corresponding to 90% RRL were 4 8M and 0.5 8M respectively. The results suggested that Al(OH)3� , Al(OH)2+, and AlSO4+, were not toxic species. Soil solution pH and soil pH measured in water were more sensitive indicators of root growth than soil pH measured in 0.01 M CaCl2.Using a Ca activity ratio of 0.05 and an Al3+ activity of 4 8M as diagnostic indices, none of the 20 soils in two experiments were toxic in Al, while 13 (all subsoils) were deficient in Ca. Thus the first limitation on root growth was Ca deficiency and not Al toxicity, in spite of high Al saturations and relatively low pH in these soils. However, Al toxicity could be induced by increasing the ionic strengths of soil solutions.


2000 ◽  
Vol 51 (1) ◽  
pp. 23 ◽  
Author(s):  
V. P. Ila'ava ◽  
C. J. Asher ◽  
F. P. C. Blamey

Sweet potato [Ipomoea batatas (L.) Lam.] is cultivated on soils varying widely in chemical properties, but relatively little is known about the effects of pH on the growth of this crop. In commercial and subsistence agriculture, sweet potato is propagated mostly from stem cuttings. This paper reports effects of a range of pH treatments (3.5–8.0) in flowing solution culture on early growth from cuttings of 15 sweet potato cultivars. Root growth was either greatly reduced or inhibited at pH 3.5. Increasing the pH to 4.0 markedly increased root development. Further increases in solution pH from 4.0 to 8.0 did not appear to affect root growth in most cultivars. Top growth in most cultivars showed a tendency to increase when pH was increased from 3.5 to 5.5 before declining with further increases in solution pH. The sweet potato cultivars studied differed widely in their tolerance to low pH, producing 16–48% of maximum top dry mass at pH 3.5. Tissue analysis from selected cultivars showed that K and Ca appeared to be limiting at pH 3.5, while P may have been deficient at pH 8.0. Results of this study indicate that low pH per se does not appear to be a major factor responsible for poor sweet potato yields in acid soils.


2008 ◽  
Vol 32 (5) ◽  
pp. 2061-2071 ◽  
Author(s):  
Ivo Ribeiro da Silva ◽  
Tarcísio Fernando Côrtes Corrêa ◽  
Roberto Ferreira Novais ◽  
Fabrício de Oliveira Gebrim ◽  
Flancer Novais Nunes ◽  
...  

A large proportion of soybean fields in Brazil are currently cultivated in the Cerrado region, where the area planted with this crop is growing considerably every year. Soybean cultivation in acid soils is also increasing worldwide. Since the levels of toxic aluminum (Al) in these acid soils is usually high it is important to understand how cations can reduce Al rhizotoxicity in soybean. In the present study we evaluated the ameliorative effect of nine divalent cations (Ca, Mg, Mn, Sr, Sn, Cu, Zn, Co and Ba) in solution culture on Al rhizotoxicity in soybean. The growth benefit of Ca and Mg to plants in an acid Inceptisol was also evaluated. In this experiment soil exchangeable Ca:Mg ratios were adjusted to reach 10 and 60 % base saturation, controlled by different amounts of CaCl2 or MgCl2 (at proportions from 100:0 up to 0:100), without altering the soil pH level. The low (10 %) and adequate (60 %) base saturation were used to examine how plant roots respond to Al at distinct (Ca + Mg)/Al ratios, as if they were growing in soils with distinct acidity levels. Negative and positive control treatments consisted of absence (under native soil or undisturbed conditions) or presence of lime (CaCO3) to reach 10 and 60 % base saturation, respectively. It was observed that in the absence of Aluminum, Cu, Zn, Co and Sn were toxic even at a low concentration (25 µmol L-1), while the effect of Mn, Ba, Sr and Mg was positive or absent on soybean root elongation when used in concentrations up to 100 µmol L-1. At a level of 10 µmol L-1 Al, root growth was only reverted to the level of control plants by the Mg treatment. Higher Tin doses led to a small alleviation of Al rhizotoxicity, while the other cations reduced root growth or had no effect. This is an indication that the Mg effect is ion-specific and not associated to an electrostatic protection mechanism only, since all ions were divalent and used at low concentrations. An increased exchangeable Ca:Mg ratio (at constant soil pH) in the acid soil almost doubled the soybean shoot and root dry matter even though treatments did not modify soil pH and exchangeable Al3+. This indicates a more efficient alleviation of Al toxicity by Mg2+ than by Ca2+. The reason for the positive response to Mg2+ was not the supply of a deficient nutrient because CaCO3 increased soybean growth by increasing soil pH without inducing Mg2+ deficiency. Both in hydroponics and acid soil, the reduction in Al toxicity was accompanied by a lower Al accumulation in plant tissue, suggesting a competitive cation absorption and/or exclusion of Al from plant tissue stimulated by an Mg-induced physiological mechanism.


1962 ◽  
Vol 10 (1) ◽  
pp. 1-22
Author(s):  
K. Dilz ◽  
E.G. Mulder

In garden plots of pH6, response to added N was slight due to nodulation, N fixation and development of red clover at low N fertilizer levels. With increasing amounts of fertilizer N the production of grass increased considerably but clover production fell; clover production increased with N treatment in the absence of grass. Nodulation of clover in uninoculated plots was poor at soil pH5.8but inoculation with Rhizobium trifolii gave normal nodulation at pH 5.0. Increasing the supply of fertilizer N increasingly delayed nodulation. Stable manure promoted nodulation and N fixation in clover on uninoculated acid soil (pH 5.0); on uninoculated soil the effect was weaker. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Author(s):  
K.H. Widdup ◽  
T.L. Knight ◽  
C.J. Waters

Slow establishment of caucasian clover (Trifolium ambiguum L.) is hindering the use of this legume in pasture mixtures. Improved genetic material is one strategy of correcting the problem. Newly harvested seed of hexaploid caucasian clover germplasm covering a range of origins, together with white and red clover and lucerne, were sown in 1 m rows in a Wakanui soil at Lincoln in November 1995. After 21 days, the caucasian clover material as a group had similar numbers of emerged seedlings as white clover and lucerne, but was inferior to red clover. There was wide variation among caucasian clover lines (48-70% seedling emergence), with the cool-season selection from cv. Monaro ranked the highest. Recurrent selection at low temperatures could be used to select material with improved rates of seedling emergence. Red clover and lucerne seedlings produced significantly greater shoot and root dry weight than caucasian and white clover seedlings. Initially, caucasian clover seedlings partitioned 1:1 shoot to root dry weight compared with 3:1 for white clover. After 2 months, caucasian clover seedlings had similar shoot growth but 3 times the root growth of white clover. Between 2 and 5 months, caucasian clover partitioned more to root and rhizome growth, resulting in a 0.3:1 shoot:root ratio compared with 2:1 for white clover. Both clover species had similar total dry weight after 5 months. Unhindered root/ rhizome devel-opment is very important to hasten the establishment phase of caucasian clover. The caucasian clover lines KZ3 and cool-season, both selections from Monaro, developed seedlings with greater shoot and root growth than cv. Monaro. KZ3 continued to produce greater root growth after 5 months, indicating the genetic potential for improvement in seedling growth rate. Different pasture estab-lishment techniques are proposed that take account of the seedling growth characteristics of caucasian clover. Keywords: establishment, genetic variation, growth, seedling emergence, Trifolium ambiguum


1984 ◽  
Vol 64 (1) ◽  
pp. 139-146
Author(s):  
THERON G. SOMMERFELDT

The effects of soil and solution pH and Na:Ca ratio in solution on the exchangeable Na, Ca, and (Na + Ca) of a Na-saturated Dark Brown Chernozemic soil were studied. At soil pH 9.0, the exchangeable Na, Ca, and (Na + Ca) were 14.5, 25.4, and 21.8% greater than at soil pH 6.0. Solution pH (6.0–9.0) had small but statistically significant effects on the amount of Na and Ca adsorbed by the soil. The logarithm of exchangeable sodium percentage (ESP) was related to the Na fraction in the solution by a polynomial equation, log ESP = 0.93 [Na/(Na + Ca)]2 + 0.16 [Na/(Na + Ca)] + 0.82. Not only is replacement of exchangeable Na with Ca important in the reclamation of this soil, should it become sodic and have a high pH, but also lowering of its surface charge, through lowering of its pH, would be an important factor in its reclamation. It appears impractical to reduce soil pH by applying acidified irrigation water. Acidic amendments such as gypsum and sulfur may be more suitable. Key words: Cation exchange, solution pH, soil pH


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Heru Kuswantoro

Most of Indonesia dryland is covered by acid soil which lead to the decreasing potential yield of the crops. In different areas soybean potential yield also different depends on the different soil pH and the availability of the soil. The objective of the research was to study the potential yield of soybean promising lines in acid soil of Central Lampung, Indonesia. Ten promising lines and two check varieties (Tanggamus and Wilis) were grown in acid soil with pH 4.7. The results showed that the highest seed yield was showed by SC5P2P3.5.4.1-5 with 2.51 t/ha. Other soybean promising lines with seed yield over than 2 t/ha-1 was SJ-5/Msr.99.5.4.5-1-6-1 and the check variety Tanggamus. The highest yield of SC5P2P3.5.4.1-5 was caused by the high number of filled pods and the large of seed size. Other nine promising lines also can be developed to obtained grain yield as many as Tanggamus yield in the area with similar soil and climate conditions.


Sign in / Sign up

Export Citation Format

Share Document