scholarly journals Improved preimplantation development of porcine somatic cell nuclear transfer embryos by caffeine treatment

2019 ◽  
Vol 20 (3) ◽  
Author(s):  
Ghangyong Kim ◽  
Pantu Kumar Roy ◽  
Xun Fang ◽  
Bahia MS Hassan ◽  
Jongki Cho
2010 ◽  
Vol 22 (9) ◽  
pp. 26
Author(s):  
Y. Jiang ◽  
R. Kelly ◽  
A. Peters ◽  
H. Fulka ◽  
D. A. Mitchell ◽  
...  

Interspecies somatic cell nuclear transfer (iSCNT) offers significant opportunities to analyze and understand nuclear-cytoplasmic interactions. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility, specifically mitochondrial DNA (mtDNA), on successful development. Transfer of somatic murine fetal fibroblasts into enucleated porcine oocytes resulted in extremely low blastocyst rates (0.4%); increased DNA strand breaks; deficient nuclear pore complex arrangements and increased aberrant karyokinesis than observed in porcine-porcine SCNT embryos. Using allele specific-PCR analysis, murine mtDNA was detected at ever-decreasing levels to the blastocyst stage, with peak levels being 0.14 ± 0.055% in 2-cell embryos. Furthermore, these embryos reduced total mtDNA copy number during preimplantation development in a manner similar to porcine embryos. Injecting mouse embryonic stem cell extract and mitochondria along with the murine donor cell into a mitochondria depleted porcine oocyte, increased blastocyst zona pellucida thinning and blastocyst rates significantly (0.4% vs 3.42%) compared to the non-supplemented iSCNT group. They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout preimplantation development. At later stages of preimplantation development, they possessed 48.00% ± 17.38% murine mtDNA and exhibited a mtDNA copy number profile similar to murine embryos. Overall, these data demonstrate that the addition of species compatible cytoplasmic factors and mitochondrial DNA improve developmental competence of iSCNT embryos.


2010 ◽  
Vol 22 (6) ◽  
pp. 1000 ◽  
Author(s):  
Inchul Choi ◽  
Keith H. S. Campbell

Caffeine treatment of ovine oocytes increases the activity of maturation-promoting factor (MPF) and mitogen-activated protein kinases (MAPKs) and, in somatic cell nuclear transfer (SCNT) embryos, increases the frequency of nuclear envelope breakdown (NEBD) and premature chromosome condensation (PCC). At the blastocyst stage, caffeine-treated SCNT embryos have increased cell numbers. One explanation for this is that NEBD and PCC release chromatin-bound somatic factors, allowing greater access of oocyte factors involved in DNA synthesis and nuclear reprogramming to donor chromatin. This could advance DNA replication and cleavage in the first cell cycle, resulting in increased cell numbers. Alternatively, increased MAPK activity may affect localisation of heat shock proteins (HSPs) and reduce apoptosis. To investigate these possibilities, we investigated chromatin accessibility, the timing of DNA synthesis and first cleavage, the localisation of HSP27 during early development and the frequency of apoptotic nuclei at the blastocyst stage. Compared with control SCNT (non-caffeine treatment), caffeine treatment (10 mM caffeine for 6 h prior to activation) increased the accessibility of DNase I to donor chromatin (P < 0.05 at 1.5 h post activation (h.p.a.)), advanced DNA synthesis (43.5% v. 67.6%, respectively; P < 0.01 at 6 h.p.a.) and first cleavage (27.3% v. 40.5% at 20 h.p.a., respectively) and increased nuclear localisation of HSP27. Although development to the blastocyst stage was not affected, caffeine increased total cell numbers (98.5 v. 76.6; P < 0.05) and reduced the frequency of apoptotic nuclei (11.27% v. 20.3%; P < 0.05) compared with control SCNT group.


2014 ◽  
Vol 60 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Sung-Hun MIN ◽  
Bong-Seok SONG ◽  
Ji-Yeong YEON ◽  
Jin-Woo KIM ◽  
Jung-Ho BAE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document