On Higher Moments of Fourier Coefficients of Holomorphic Cusp Forms

2011 ◽  
Vol 63 (3) ◽  
pp. 634-647 ◽  
Author(s):  
Guangshi Lü

Abstract Let be the space of holomorphic cusp forms of even integral weight k for the full modular group. Let and be the n-th normalized Fourier coefficients of two holomorphic Hecke eigencuspforms , respectively. In this paper we are able to show the following results about higher moments of Fourier coefficients of holomorphic cusp forms.(i)For any , we have(ii)If , then for any , we haveIf , then for any , we haveIf and , then for any , we havewhere P(x) is a polynomial of degree 3.

2015 ◽  
Vol 58 (3) ◽  
pp. 548-560
Author(s):  
Guangshi Lü ◽  
Ayyadurai Sankaranarayanan

AbstractLet Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for the full modular group SL(z, ℤ). Let be the n-th normalized Fourier coefficients of three distinct holomorphic primitive cusp forms , and h(z) ∊ Sk3 (Γ), respectively. In this paper we study the cancellations of sums related to arithmetic functions, such as twisted by the arithmetic function λf(n).


2019 ◽  
Vol 31 (2) ◽  
pp. 403-417
Author(s):  
Youness Lamzouri

AbstractLet f be a Hecke cusp form of weight k for the full modular group, and let {\{\lambda_{f}(n)\}_{n\geq 1}} be the sequence of its normalized Fourier coefficients. Motivated by the problem of the first sign change of {\lambda_{f}(n)}, we investigate the range of x (in terms of k) for which there are cancellations in the sum {S_{f}(x)=\sum_{n\leq x}\lambda_{f}(n)}. We first show that {S_{f}(x)=o(x\log x)} implies that {\lambda_{f}(n)<0} for some {n\leq x}. We also prove that {S_{f}(x)=o(x\log x)} in the range {\log x/\log\log k\to\infty} assuming the Riemann hypothesis for {L(s,f)}, and furthermore that this range is best possible unconditionally. More precisely, we establish the existence of many Hecke cusp forms f of large weight k, for which {S_{f}(x)\gg_{A}x\log x}, when {x=(\log k)^{A}}. Our results are {\mathrm{GL}_{2}} analogues of work of Granville and Soundararajan for character sums, and could also be generalized to other families of automorphic forms.


Author(s):  
Corentin Darreye

Abstract We study the probabilistic behavior of sums of Fourier coefficients in arithmetic progressions. We prove a result analogous to previous work of Fouvry–Ganguly–Kowalski–Michel and Kowalski–Ricotta in the context of half-integral weight holomorphic cusp forms and for prime power modulus. We actually show that these sums follow in a suitable range a mixed Gaussian distribution that comes from the asymptotic mixed distribution of Salié sums.


2014 ◽  
Vol 10 (08) ◽  
pp. 1921-1927 ◽  
Author(s):  
Winfried Kohnen ◽  
Yves Martin

Let f be an even integral weight, normalized, cuspidal Hecke eigenform over SL2(ℤ) with Fourier coefficients a(n). Let j be a positive integer. We prove that for almost all primes p the sequence (a(pjn))n≥0 has infinitely many sign changes. We also obtain a similar result for any cusp form with real Fourier coefficients that provide the characteristic polynomial of some generalized Hecke operator is irreducible over ℚ.


2018 ◽  
Vol 14 (08) ◽  
pp. 2277-2290 ◽  
Author(s):  
Rainer Schulze-Pillot ◽  
Abdullah Yenirce

We prove a bound for the Fourier coefficients of a cusp form of integral weight which is not a newform by computing an explicit orthogonal basis for the space of cusp forms of given integral weight and level.


Author(s):  
Winfried Kohnen

AbstractWe study sign changes and non-vanishing of a certain double sequence of Fourier coefficients of cusp forms of half-integral weight.


Sign in / Sign up

Export Citation Format

Share Document